Network-Based Ionospheric Gradient Monitoring to Support Ground Based Augmentation Systems (2022)
Contributions to High Accuracy Snapshot GNSS Positioning
Snapshot positioning is the technique to determine the position of a Global Navigation Satellite System (GNSS) receiver using only a very brief interval of the received satellite signal. In recent years, this technique has received a great amount of attention thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic costs for deployment. However, the state of the art algorithms regarding snapshot positioning were based on code measurements only, which unavoidably limited the positioning accuracy to meter level. The present PhD research aims at achieving high-accuracy (centimetre level) snapshot positioning by properly utilizing carrier phase measurements. Two technical challenges should be tackled before such level of accuracy can be achieved, namely, satellite transmission time inaccuracy and the so-called Data Bit Ambiguity (DBA) issue. The first challenge is essentially originated from the lack of absolute timing ...
Liu, Xiao — Universitat Politecnica de Catalunya
Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems
Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...
Nwalozie, Gerald Chetachi — Technische Universität Ilmenau
Data-Driven Radio Planning and Cellular Network Optimization
Abstract Integrating AI into wireless network design and management is essential for creating self-sustaining 6G networks. A key challenge is the development of automated network procedures with minimal human intervention, leveraging real-time monitoring data for immediate feedback. These advancements promote data-driven decision-making but pose risks related to data availability, safety, and the black-box nature of learning algorithms. This cumulative thesis proposes and evaluates novel procedures and algorithms for data- driven radio planning and cellular network optimization, addressing practical challenges in applying learning-based methods on real-world deployments. It emphasizes the utility of monitoring data and the integration of model-based and model-free methods, ensuring the scalability and safety of adaptive network procedures across diverse environments. The first part of the thesis explores the application of deep learning to radio propagation modeling in live cellular networks. The first paper presents a novel network ...
Lukas Eller — TU Wien
Robust Signal Processing with Applications to Positioning and Imaging
This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...
Li, Haoqing — Northeastern University
Change Detection Techniques for GNSS Signal-Level Integrity
The provision of accurate positioning is becoming essential to our modern society. One of the main reasons is the great success and ease of use of Global Navigation Satellite Systems (GNSSs), which has led to an unprecedented amount of GNSS-based applications. In particular, the current trend shows that a new era of GNSS-based applications and services is emerging. These applications are the so-called critical applications, in which the physical safety of users may be in danger due to a miss-performance of the positioning system. These applications have very stringent requirements in terms of integrity. Integrity is a measure of reliability and trust that can be placed on the information provided by the system. Integrity algorithms were originally designed for civil aviation in the 1980s. Unfortunately, GNSS-based critical applications are often associated with terrestrial environments and original integrity algorithms usually fail. ...
Egea-Roca, Daniel — Universitat Autònoma de Barcelona
Best Signal Selection with Automatic Delay Compensation in VoIP Environment
In the last decades, air traffic spread more and more in the world, connecting more and more places. At the same time, the need to manage all the flights correctly and securely increased. Air traffic authorities imposed and updated several standards for the air traffic management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, special voice communication systems (VCS) were developed. They ensure the communication between the pilots and the operators from the ground control centers. When a communication is initiated between the aircraft’s pilot and the ground air traffic control operator, various systems are used. The pilot speaks through the aircraft’s radio station and the signal is received by several ground radio stations. Then, the signal from each ground radio station arrives on different paths to the control center. Here one of the received ...
Marinescu, Radu-Sebastian — University Politehnica of Bucharest
The thesis focuses on statistical approaches to model, mitigate, and prevent distributed network attacks. When dealing with distributed network attacks (and, more in general, with cyber-security problems), three fundamental phases/issues emerge distinctly. The first issue concerns the threat propagation across the network, which entails an "avalanche" effect, with the number of infected nodes increasing exponentially as time elapses. The second issue regards the design of proper mitigation strategies (e.g., threat detection, attacker's identification) aimed at containing the propagation phenomenon. Finally (and this is the third issue), it is also desirable to act on the system infrastructure to grant a conservative design by adding some controlled degree of redundancy, in order to face those cases where the attacker has not been yet defeated. The contributions of the present thesis address the aforementioned relevant issues, namely, propagation, mitigation and prevention of distributed ...
Di Mauro, Mario — University of Salerno
Spaceborne Radar for Space Situational Awareness
The space environment around planet Earth comprises a variety of nonhomogeneous and nonstationary fluxes of natural and man-made junk. Such debris may collide at hypervelocity with strategic orbital infrastructure, thus jeopardizing the space economy. For this reason, the European Space Agency (ESA) sustains a strategy to acquire a “...capability to watch for objects and natural phenomena that could harm satellites in orbit.” Accordingly, large ground-based radars and optical telescopes allow monitoring debris populations with an average size larger than, say 10 cm, up to Low Earth Orbit (LEO) and Geostationary Orbit (GEO), respectively. In fact, these assets form fence coverage areas along with a grueling data fusion for orbit estimation while coping with limits related to temporal and spatial observation constraints, atmospheric hindrances, and detection performance (especially with respect to small-size targets). Interestingly, an active space-based debris detection and tracking ...
Maffei Marco — University of Napoli Federico II
Theoretical aspects and real issues in an integrated multiradar system
In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...
Fortunati Stefano — University of Pisa
Deep Learning of GNSS Signal Detection
Global Navigation Satellite Systems (GNSS) is the de facto technology for Position, Navigation, and Timing (PNT) applications when it is available. GNSS relies on one or more satellite constellations that transmit ranging signals, which a receiver can use to self-localize. Signal acquisition is a crucial step in GNSS receivers, which is typically solved by maximizing the so-called Cross Ambiguity Function (CAF) resulting from a hypothesis testing problem. The CAF is a two-dimensional function that is related to the correlation between the received signal and a local code replica for every possible delay/Doppler pair, which is then maximized for signal detection and coarse synchronization. The outcome of this statistical process decides whether the signal from a particular satellite is present or absent in the received signal, as well as provides a rough estimate of its associated code delay and Doppler frequency, ...
Borhani Darian,Parisa — Northeastern University
Advances in unobtrusive monitoring of sleep apnea using machine learning
Obstructive sleep apnea (OSA) is among the most prevalent sleep disorders, which is estimated to affect 6 %−19 % of women and 13 %−33 % of men. Besides daytime sleepiness, impaired cognitive functioning and an increased risk for accidents, OSA may lead to obesity, diabetes and cardiovascular diseases (CVD) on the long term. Its prevalence is only expected to rise, as it is linked to aging and excessive body fat. Nevertheless, many patients remain undiagnosed and untreated due to the cumbersome clinical diagnostic procedures. For this, the patient is required to sleep with an extensive set of body attached sensors. In addition, the recordings only provide a single night perspective on the patient in an uncomfortable, and often unknown, environment. Thus, large scale monitoring at home is desired with comfortable sensors, which can stay in place for several nights. To ...
Huysmans, Dorien — KU Leuven
Monitoring Infants by Automatic Video Processing
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 2‰ live births, 11‰ for preterm ...
Cattani Luca — University of Parma (Italy)
GNSS Localization and Attitude Determination via Optimization Techniques on Riemannian Manifolds
Global Navigation Satellite Systems (GNSS)-based localization and attitude determination are essential for many navigation and control systems widely used in aircrafts, spacecrafts, vessels, automobiles, and other dynamic platforms. A GNSS receiver can generate pseudo-range and carrier-phase observations based on the signals transmitted from the navigation satellites. Since the accuracy of the carrier phase is two orders of magnitude higher than that of the pseudo-range, it is crucial to employ the precise GNSS data, the carrier phase, to perform a high-accuracy position or/and attitude estimate. The main challenge to fully utilizing carrier-phase observations is to successfully resolve the unknown integer parts (number of whole cycles), a process usually referred to as integer ambiguity resolution. Many methods have been developed to resolve integer ambiguities with different performance offerings. Under challenging environments with insufficient tracked satellites, significant multipath interference, and severe atmospheric effects, ...
Xing Liu — King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Bayesian data fusion for distributed learning
This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...
Peng Wu — Northeastern University
Analysis, Modelling, and Simulation of an Integrated Multisensor System for Maritime Border Control
In this dissertation a notional multi-sensor system acting in a maritime border control scenario for Homeland Security (HS) is analyzed, modelled, and simulated. The functions performed by the system are the detection, tracking, identification and classification of naval targets that enter a sea region, the evaluation of their threat level and the selection of a suitable reaction to them. The emulated system is composed of two platforms carrying multiple sensors: a land based platform, located on the coast, and an air platform, moving on an elliptic trajectory in front of the coast. The land based platform is equipped with a Vessel Traffic Service (VTS) radar, an infrared camera (IR) and a station belonging to an Automatic Identification System (AIS). The air platform carries an Airborne Early Warning Radar (AEWR) that can operate on a spotlight Synthetic Aperture Radar (SAR) mode, ...
Giompapa, Sofia — Universita di Pisa
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.