Change Detection Techniques for GNSS Signal-Level Integrity

The provision of accurate positioning is becoming essential to our modern society. One of the main reasons is the great success and ease of use of Global Navigation Satellite Systems (GNSSs), which has led to an unprecedented amount of GNSS-based applications. In particular, the current trend shows that a new era of GNSS-based applications and services is emerging. These applications are the so-called critical applications, in which the physical safety of users may be in danger due to a miss-performance of the positioning system. These applications have very stringent requirements in terms of integrity. Integrity is a measure of reliability and trust that can be placed on the information provided by the system. Integrity algorithms were originally designed for civil aviation in the 1980s. Unfortunately, GNSS-based critical applications are often associated with terrestrial environments and original integrity algorithms usually fail. ...

Egea-Roca, Daniel — Universitat Autònoma de Barcelona


Contributions to High Accuracy Snapshot GNSS Positioning

Snapshot positioning is the technique to determine the position of a Global Navigation Satellite System (GNSS) receiver using only a very brief interval of the received satellite signal. In recent years, this technique has received a great amount of attention thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic costs for deployment. However, the state of the art algorithms regarding snapshot positioning were based on code measurements only, which unavoidably limited the positioning accuracy to meter level. The present PhD research aims at achieving high-accuracy (centimetre level) snapshot positioning by properly utilizing carrier phase measurements. Two technical challenges should be tackled before such level of accuracy can be achieved, namely, satellite transmission time inaccuracy and the so-called Data Bit Ambiguity (DBA) issue. The first challenge is essentially originated from the lack of absolute timing ...

Liu, Xiao — Universitat Politecnica de Catalunya


Estimation of Nonlinear Dynamic Systems: Theory and Applications

This thesis deals with estimation of states and parameters in nonlinear and non-Gaussian dynamic systems. Sequential Monte Carlo methods are mainly used to this end. These methods rely on models of the underlying system, motivating some developments of the model concept. One of the main reasons for the interest in nonlinear estimation is that problems of this kind arise naturally in many important applications. Several applications of nonlinear estimation are studied. The models most commonly used for estimation are based on stochastic difference equations, referred to as state-space models. This thesis is mainly concerned with models of this kind. However, there will be a brief digression from this, in the treatment of the mathematically more intricate differential-algebraic equations. Here, the purpose is to write these equations in a form suitable for statistical signal processing. The nonlinear state estimation problem is ...

Schon, Thomas — Linkopings Universitet


Best Signal Selection with Automatic Delay Compensation in VoIP Environment

In the last decades, air traffic spread more and more in the world, connecting more and more places. At the same time, the need to manage all the flights correctly and securely increased. Air traffic authorities imposed and updated several standards for the air traffic management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, special voice communication systems (VCS) were developed. They ensure the communication between the pilots and the operators from the ground control centers. When a communication is initiated between the aircraft’s pilot and the ground air traffic control operator, various systems are used. The pilot speaks through the aircraft’s radio station and the signal is received by several ground radio stations. Then, the signal from each ground radio station arrives on different paths to the control center. Here one of the received ...

Marinescu, Radu-Sebastian — University Politehnica of Bucharest


Privacy protection preserving the utility of visual surveillance

Due to some tragic events such as crime, bank robberies and terrorist attacks, an unparalleled surge in video surveillance cameras has occurred in recent years. In consequence, our daily life is overseen everywhere (e.g. on the street, in stations, in shops and in the workplace). For example, on average, people living in London can be caught on cameras more than 300 times a day. At the same time, automatic processing technology and quality of sensors have advanced significantly, which has even enabled automatic detection, tracking and identification of individuals. With the proliferation of video surveillance systems and the progress in automatic recognition, privacy protection is now becoming a significant concern. Video surveillance is intrusive because it allows the observation of certain information that is considered as private (i.e., identity or some characteristics such as age, race, gender). Nowadays, some processing ...

Ruchaud, Natacha — Eurecom


Statistical Models for the Characterization, Identification, and Mitigation of Distributed Attacks in Data Networks

The thesis focuses on statistical approaches to model, mitigate, and prevent distributed network attacks. When dealing with distributed network attacks (and, more in general, with cyber-security problems), three fundamental phases/issues emerge distinctly. The first issue concerns the threat propagation across the network, which entails an "avalanche" effect, with the number of infected nodes increasing exponentially as time elapses. The second issue regards the design of proper mitigation strategies (e.g., threat detection, attacker's identification) aimed at containing the propagation phenomenon. Finally (and this is the third issue), it is also desirable to act on the system infrastructure to grant a conservative design by adding some controlled degree of redundancy, in order to face those cases where the attacker has not been yet defeated. The contributions of the present thesis address the aforementioned relevant issues, namely, propagation, mitigation and prevention of distributed ...

Di Mauro, Mario — University of Salerno


Theoretical aspects and real issues in an integrated multiradar system

In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...

Fortunati Stefano — University of Pisa


Face Recognition's Grand Challenge: uncontrolled conditions under control

The number of cameras increases rapidly in squares, shopping centers, railway stations and airport halls. There are hundreds of cameras in the city center of Amsterdam. This is still modest compared to the tens of thousands of cameras in London, where citizens are expected to be filmed by more than three hundred cameras of over thirty separate Closed Circuit Television (CCTV) systems in a single day [84]. These CCTV systems include both publicly owned systems (railway stations, squares, airports) and privately owned systems (shops, banks, hotels). The main purpose of all these cameras is to detect, prevent and monitor crime and anti-social behaviour. Other goals of camera surveillance can be detection of unauthorized access, improvement of service, fire safety, etc. Since the terrorist attack on 9/11, detection and prevention of terrorist activities especially at high profiled locations such as airports, ...

Boom, Bas — University of Twente


Monitoring Infants by Automatic Video Processing

This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 2‰ live births, 11‰ for preterm ...

Cattani Luca — University of Parma (Italy)


Device-to-Device Wireless Communications

Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...

Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna


Optimization of Positioning Capabilities in Wireless Sensor Networks: from power efficiency to medium access

In Wireless Sensor Networks (WSN), the ability of sensor nodes to know its position is an enabler for a wide variety of applications for monitoring, control, and automation. Often, sensor data is meaningful only if its position can be determined. Many WSN are deployed indoors or in areas where Global Navigation Satellite System (GNSS) signal coverage is not available, and thus GNSS positioning cannot be guaranteed. In these scenarios, WSN may be relied upon to achieve a satisfactory degree of positioning accuracy. Typically, batteries power sensor nodes in WSN. These batteries are costly to replace. Therefore, power consumption is an important aspect, being performance and lifetime ofWSN strongly relying on the ability to reduce it. It is crucial to design effective strategies to maximize battery lifetime. Optimization of power consumption can be made at different layers. For example, at the ...

Moragrega, Ana — Universitat Politecnica de Catalunya


Analysis, Modelling, and Simulation of an Integrated Multisensor System for Maritime Border Control

In this dissertation a notional multi-sensor system acting in a maritime border control scenario for Homeland Security (HS) is analyzed, modelled, and simulated. The functions performed by the system are the detection, tracking, identification and classification of naval targets that enter a sea region, the evaluation of their threat level and the selection of a suitable reaction to them. The emulated system is composed of two platforms carrying multiple sensors: a land based platform, located on the coast, and an air platform, moving on an elliptic trajectory in front of the coast. The land based platform is equipped with a Vessel Traffic Service (VTS) radar, an infrared camera (IR) and a station belonging to an Automatic Identification System (AIS). The air platform carries an Airborne Early Warning Radar (AEWR) that can operate on a spotlight Synthetic Aperture Radar (SAR) mode, ...

Giompapa, Sofia — Universita di Pisa


Integrated active noise control and noise reduction in hearing aids

In every day life conversations and listening scenarios the desired speech signal is rarely delivered alone. The listener most commonly faces a scenario where he has to understand speech in a noisy environment. Hearing impairments, and more particularly sensorineural losses, can cause a reduction of speech understanding in noise. Therefore, in a hearing aid compensating for such kind of losses it is not sufficient to just amplify the incoming sound. Hearing aids also need to integrate algorithms that allow to discriminate between speech and noise in order to extract a desired speech from a noisy environment. A standard noise reduction scheme in general aims at maximising the signal-to-noise ratio of the signal to be fed in the hearing aid loudspeaker. This signal, however, does not reach the eardrum directly. It first has to propagate through an acoustic path and encounter ...

Serizel, Romain — KU Leuven


Signal processing of FMCW Synthetic Aperture Radar data

In the field of airborne earth observation there is special attention to compact, cost effective, high resolution imaging sensors. Such sensors are foreseen to play an important role in small-scale remote sensing applications, such as the monitoring of dikes, watercourses, or highways. Furthermore, such sensors are of military interest; reconnaissance tasks could be performed with small unmanned aerial vehicles (UAVs), reducing in this way the risk for one's own troops. In order to be operated from small, even unmanned, aircrafts, such systems must consume little power and be small enough to fulfill the usually strict payload requirements. Moreover, to be of interest for the civil market, cost effectiveness is mandatory. Frequency Modulated Continuous Wave (FMCW) radar systems are generally compact and relatively cheap to purchase and to exploit. They consume little power and, due to the fact that they are ...

Meta, Adriano — Delft University of Technology


Good Features to Correlate for Visual Tracking

Estimating object motion is one of the key components of video processing and the first step in applications which require video representation. Visual object tracking is one way of extracting this component, and it is one of the major problems in the field of computer vision. Numerous discriminative and generative machine learning approaches have been employed to solve this problem. Recently, correlation filter based (CFB) approaches have been popular due to their computational efficiency and notable performances on benchmark datasets. The ultimate goal of CFB approaches is to find a filter (i.e., template) which can produce high correlation outputs around the actual object location and low correlation outputs around the locations that are far from the object. Nevertheless, CFB visual tracking methods suffer from many challenges, such as occlusion, abrupt appearance changes, fast motion and object deformation. The main reasons ...

Gundogdu, Erhan — Middle East Technical University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.