Full-Duplex Device-to-Device Communication for 5G Network (2019)
Full-Duplex Wireless: Self-interference Modeling, Digital Cancellation, and System Studies
In the recent years, a significant portion of the research within the field of wireless communications has been motivated by two aspects: the constant increase in the number of wireless devices and the higher and higher data rate requirements of the individual applications. The undisputed outcome of these phenomena is the heavy congestion of the suitable spectral resources. This has inspired many innovative solutions for improving the spectral efficiency of the wireless communications systems by facilitating more simultaneous connections and higher data rates without requiring additional spectrum. These include technologies such as in-phase/quadrature (I/Q) modulation, multiple-input and multiple-output (MIMO) systems, and the orthogonal frequency-division multiplexing (OFDM) waveform, among others. Even though these existing solutions have greatly improved the spectral efficiency of wireless communications, even more advanced techniques are needed for fulfilling the future data transfer requirements in the ultra high ...
Korpi, Dani — Tampere University of Technology
To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...
Zhang, Jianshu — Ilmenau University of Technology
Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems
To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...
Kiayani, Adnan — Tampere University of Technology
The proliferation of technologies like Internet of Things (IoT) and Industrial IoT (IIoT) has led to rapid growth in the number of connected devices and the volume of data associated with IoT applications. It is expected that more than 125 billion IoT devices will be connected to the Internet by 2030. With the plethora of wireless IoT devices, we are moving towards the connected world which is the guiding principle for the IoT. The next generation of IoT network should be capable of interconnecting heterogeneous IoT sensor or devices for effective Device-to-Device (D2D), Machine-to-Machine (M2M) communications as well as facilitating various IoT services and applications. Therefore, the next generation of IoT networks is expected to meet the capacity demand of such a network of billions of IoT devices. The current underlying wireless network is based on Orthogonal Multiple Access (OMA) ...
Rauniyar, Ashish — University of Oslo, Norway
Design and Analysis of Duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links
Relaying, i.e., multihop communication via so-called relay nodes, has emerged as an advanced technology for economically realizing long transmission ranges and high data rates in wireless systems. The focus of this thesis is on multihop multiuser systems where signals are modulated with orthogonal frequency-division multiplexing or multiple access, i.e., OFDM(A), and relays are infrastructure-based network nodes. In general, the thesis contributes by investigating how to operate relay links optimally under spectrum, transmit power and processing capability limitations, as well as how to improve signal processing in relays by exploiting other advanced concepts such as multiantenna techniques, spectrum reuse, transmit power adaptation, and new options for multicarrier protocol design. The first theme is the design and analysis of duplexing modes which define how a relay link reuses allocated frequency bands in each hop. Especially, the full-duplex relaying mode is promoted as ...
Riihonen, Taneli — Aalto University
Massive MIMO: Fundamentals and System Designs
The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...
Ngo, Quoc Hien — Linköping University
Coordination Strategies for Interference Management in MIMO Dense Cellular Networks
The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...
Lagen, Sandra — Universitat Politecnica de Catalunya
Adaptive Signal Processing for Power Line Communications
This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...
Tripodi, Carlo — Università degli Studi di Parma
Interference analysis of and dynamic channel assignment algorithms in TD–CDMA/TDD systems
The radio frequency spectrum for commercial wireless communications has become an expensive commodity. Consequently, radio access techniques are required which enable the efficient exploitation of these resources. This, however, is a difficult task due to an increasing diversity of wireless services. Hence, in order to achieve acceptable spectrum efficiency a flexible air– interface is required. It has been demonstrated that code division multiple access (CDMA) provides flexibility by enabling efficient multi user access in a cellular environment. In addition, time division duplex (TDD) as compared to frequency division duplex (FDD) represents an appropriate method to cater for the asymmetric use of a duplex channel. However, the TDD technique is subject to additional interference mechanisms in particular if neighbouring cells require different rates of asymmetry. If TDD is combined with an interference limited multiple access technique such as CDMA, the additional ...
Haas, Harald — University Of Edinburgh
On the Energy Efficiency of Cooperative Wireless Networks
The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...
Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid
Multiantenna Cellular Communications: Channel Estimation, Feedback, and Resource Allocation
The use of multiple antennas at base stations and user devices is a key component in the design of cellular communication systems that can meet the capacity demands of tomorrow. The downlink transmission from base stations to users is particularly limiting, both from a theoretical and a practical perspective, since user devices should be simple and power-efficient, and because many applications primarily create downlink traffic (e.g., video streaming). The potential gain of employing multiple antennas for downlink transmission is well recognized: the total data throughput increases linearly with the number of transmit antennas if the spatial dimension is exploited for simultaneous transmission to multiple users. In the design of practical cellular systems, the actual benefit of multiuser multiantenna transmission is limited by a variety of factors, including acquisition and accuracy of channel information, transmit power, channel conditions, cell density, user ...
Emil Björnson — KTH Royal Institute of Technology
Robust Game-Theoretic Algorithms for Distributed Resource Allocation in Wireless Communications
The predominant game-theoretic solutions for distributed rate-maximization algorithms in Gaussian interference channels through optimal power control require perfect channel knowledge, which is not possible in practice due to various reasons, such as estimation errors, feedback quantization and latency between channel estimation and signal transmission. This thesis therefore aims at addressing this issue through the design and analysis of robust game-theoretic algorithms for rate-maximization in Gaussian interference channels in the presence of bounded channel uncertainty. A robust rate-maximization game is formulated for the single-antenna frequency-selective Gaussian interference channel under bounded channel uncertainty. The robust-optimization equilibrium solution for this game is independent of the probability distribution of the channel uncertainty. The existence and uniqueness of the equilibrium are studied and sufficient conditions for the uniqueness of the equilibrium are provided. Distributed algorithms to compute the equilibrium solution are presented and shown to ...
Anandkumar, Amod Jai Ganesh — Loughborough University
Cooperative Strategies for Inter-cell Interference Management in Dense Cellular Networks
The number of mobile devices and the amount of traffic generated by them has grown at a tremendous pace in the last years and it is expected to continue growing. This growth contrasts with the limited bandwidth that needs to be shared among users. Network densification has been proposed as a promising technique to satisfy the previous demands over a shared bandwidth. This is realized by increasing the density of base stations deployed. Although network densification can improve the signal-to-interference-plus-noise ratio (SINR) of the users located close to the serving base station, it can also increase the inter-cell interference received by other users. In current cellular networks, base stations deal with inter-cell interference by splitting the bandwidth in two parts. The first one is assigned to users with low interference (typically in the cell center) and it is reused in ...
Torrea Durán, Rodolfo — KU Leuven
Device-to-Device Wireless Communications
Device-to-Device (D2D) is one of the important proposed solutions to increase the capacity, offload the traffic, and improve the energy effciency in next generation cellular networks. D2D communication is known as a direct communication between two users without using cellular infrastructure networks. Despite of large expected bene fits in terms of capacity in D2D, the coexistence of D2D and cellular networks in the same spectrum creates new challenges in interference management and network design. To limit the interference power control schemes on cellular networks and D2D networks are typically adopted. Even though power control is introduced to limit the interference level, it does not prevent cellular and D2D users from experiencing coverage limitation when sharing the same radio resources. Therefore, the design of such networks requires the availability of suitable methods able to properly model the eff ect of interference ...
Alhalabi, Ashraf S.A. — Universita Degli Sudi di Bologna
Wireless connectivity, with its relative ease of over-the-air information sharing, is a key technological enabler that facilitates many of the essential applications, such as satellite navigation, cellular communication, and media broadcasting, that are nowadays taken for granted. However, that relative ease of over-the-air communications has significant drawbacks too. On one hand, the broadcast nature of wireless communications means that one receiver can receive the superposition of multiple transmitted signals. But on the other hand, it means that multiple receivers can receive the same transmitted signal. The former leads to congestion and concerns about reliability because of the limited nature of the electromagnetic spectrum and the vulnerability to interference. The latter means that wirelessly transmitted information is inherently insecure. This thesis aims to provide insights and means for improving physical layer reliability and security of wireless communications by, in a sense, ...
Pärlin, Karel — Tampere University
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.