High performance cache-aided downlink systems: novel algorithms and analysis

The thesis first addresses the worst-user bottleneck of wireless coded caching, which is known to severely diminish cache-aided multicasting gains. We present a novel scheme, called aggregated coded caching, which can fully recover the coded caching gains by capitalizing on the shared side information brought about by the effectively unavoidable file-size constraint. The thesis then transitions to scenarios with transmitters with multi-antenna arrays. In particular, we now consider the multi-antenna cache-aided multi-user scenario, where the multi-antenna transmitter delivers coded caching streams, thus being able to serve multiple users at a time, with a reduced radio frequency (RF) chains. By doing so, coded caching can assist a simple analog beamformer (only a single RF chain), thus incurring considerable power and hardware savings. Finally, after removing the RF-chain limitation, the thesis studies the performance of the vector coded caching technique, and reveals ...

ZHAO, Hui — Sorbonne University, EURECOM


Sparse Bayesian learning, beamforming techniques and asymptotic analysis for massive MIMO

Multiple antennas at the base station side can be used to enhance the spectral efficiency and energy efficiency of the next generation wireless technologies. Indeed, massive multi-input multi-output (MIMO) is seen as one promising technology to bring the aforementioned benefits for fifth generation wireless standard, commonly known as 5G New Radio (5G NR). In this monograph, we will explore a wide range of potential topics in multi-user MIMO (MU-MIMO) relevant to 5G NR, • Sum rate maximizing beamforming (BF) design and robustness to partial channel state information at the transmitter (CSIT) • Asymptotic analysis of the various BF techniques in massiveMIMO and • Bayesian channel estimationmethods using sparse Bayesian learning. While massive MIMO has the aforementioned benefits, it makes the acquisition of the channel state information at the transmitter (CSIT) very challenging. Since it requires large amount of uplink (UL) ...

Christo Kurisummoottil Thomas — EURECOM ( SORBONNE UNIVERSITY, FRANCE)


Phase Noise and Wideband Transmission in Massive MIMO

In the last decades the world has experienced a massive growth in the demand for wireless services. The recent popularity of hand-held devices with data exchange capabilities over wireless networks, such as smartphones and tablets, increased the wireless data traffic even further. This trend is not expected to cease in the foreseeable future. In fact, it is expected to accelerate as everyday apparatus unrelated with data communications, such as vehicles or household devices, are foreseen to be equipped with wireless communication capabilities. Further, the next generation wireless networks should be designed such that they have increased spectral and energy efficiency, provide uniformly good service to all of the accommodated users and handle many more devices simultaneously. Massive multiple-input multiple-output (Massive MIMO) systems, also termed as large-scale MIMO, very large MIMO or full-dimension MIMO, have recently been proposed as a candidate ...

Pitarokoilis, Antonios — Linköping University


Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks

Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...

D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale


Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...

Kiayani, Adnan — Tampere University of Technology


Communication Rates for Fading Channels with Imperfect Channel-State Information

An important specificity of wireless communication channels are the rapid fluctuations of propagation coefficients. This effect is called fading and is caused by the motion of obstacles, scatterers and reflectors standing along the different paths of electromagnetic wave propagation between the transmitting and the receiving terminal. These changes in the geometry of the wireless channel prompt the attenuation coefficients and the relative phase shifts between the multiple propagation paths to vary. This suggests to model the channel coefficients (the transfer matrix) as random variables. The present thesis studies information rates for reliable transmission of information over fading channels under the realistic assumption that the receiver has only imperfect knowledge of the random fading state. While the over-idealized assumption of perfect channel-state information at the receiver (CSIR) gives rise to many simple expressions and is fairly well understood, the settings with ...

Pastore, Adriano — Universitat Politècnica de Catalunya


Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...

Zhang, Jianshu — Ilmenau University of Technology


Precoding and Relaying Algorithms for Multiuser MIMO Downlink Channels

In the last years, research has focused on multiple-input multiple-output (MIMO) wireless technology due to the capacity and performance improvement it provides, offering a higher spectral efficiency. In addition, when multiple users take part in the network, the scenario becomes much more complex, since resources like bandwidth, time or transmission power must be shared. Furthermore, the performance of the system is degraded as a consequence of the noise and multiuser interference (MUI). When the transmission is conducted from a base station (BS) to multiple users, a pre-equalization stage called precoding is applied. By means of this, each user will be able to interpret the signal independently, without the knowledge of the channel. Precoding techniques are classified into linear and non-linear. In fact, the non-linear Tomlinson-Harashima precoding (THP) and vector precoding (VP) techniques have been shown to achieve very good results ...

Jimenez, Idoia — University of Mondragon


Digital compensation of front-end non-idealities in broadband communication systems

The wireless communication industry has seen a tremendous growth in the last few decades. The ever increasing demand to stay connected at home, work, and on the move, with voice and data applications, has continued the need for more sophisticated end-user devices. A typical smart communication device these days consists of a radio system that can access a mixture of mobile cellular services (GSM, UMTS, etc), indoor wireless broadband services (WLAN-802.11b/g/n), short range and low energy personal communications (Bluetooth), positioning and navigation systems (GPS), etc. A smart device capable of meeting all these requirements has to be highly flexible and should be able to reconfigure radio transmitters and receivers as and when required. Further, the radio modules used in these devices should be extremely small so that the device itself is portable. In addition, the device should also be economical ...

Tandur, Deepaknath — Katholieke Universiteit Leuven


Non-Coherent Communication in Multiple-Antenna Systems: Receiver Design, Codebook Construction and Capacity Analysis

The thesis addresses the problem of space-time codebook design for communication in multiple-input multiple-output (MIMO) wireless systems. The realistic and challenging non-coherent setup (channel state information is absent at the receiver) is considered. A generalized likelihood ratio test (GLRT)-like detector is assumed at the receiver and contrary to most existing approaches, an arbitrary correlation structure is allowed for the additive Gaussian observation noise. A theoretical analysis of the probability of error is derived, for both the high and low signal-to-noise ratio (SNR) regimes. This leads to a codebook design criterion which shows that optimal codebooks correspond to optimal packings in a Cartesian product of projective spaces. The actual construction of the codebooks involves solving a high-dimensional, nonlinear, nonsmooth optimization problem which is tackled here in two phases: a convex semi-definite programming (SDP) relaxation furnishes an initial point which is then ...

Beko, Marko — IST, Lisbon


Coordination Strategies for Interference Management in MIMO Dense Cellular Networks

The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...

Lagen, Sandra — Universitat Politecnica de Catalunya


On MIMO Systems and Adaptive Arrays for Wireless Communication. Analysis and Practical Aspects

This thesis is concerned with the use of multiple antenna elements in wireless communication over frequency non-selective radio channels. Both measurement results and theoretical analysis are presented. New transmit strategies are derived and compared to existing transmit strategies, such as beamforming and space time block coding (STBC). It is found that the best transmission algorithm is largely dependent on the channel characteristics, such as the number of transmit and receive antennas and the existence of a line of sight component. Rayleigh fading multiple input multiple output (MIMO) channels are studied using an eigenvalue analysis and exact expressions for the bit error rates and outage capacities for beamforming and STBC is found. In general are MIMO fading channels correlated and there exists a mutual coupling between antenna elements. These findings are supported by indoor MIMO measurements. It is found that the ...

Wennstram, Mattias — Uppsala University


Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity


Joint Downlink Beamforming and Discrete Resource Allocation Using Mixed-Integer Programming

Multi-antenna processing is widely adopted as one of the key enabling technologies for current and future cellular networks. Particularly, multiuser downlink beamforming (also known as space-division multiple access), in which multiple users are simultaneously served with spatial transmit beams in the same time and frequency resource, achieves high spectral efficiency with reduced energy consumption. To harvest the potential of multiuser downlink beamforming in practical systems, optimal beamformer design shall be carried out jointly with network resource allocation. Due to the specifications of cellular standards and/or implementation constraints, resource allocation in practice naturally necessitates discrete decision makings, e.g., base station (BS) association, user scheduling and admission control, adaptive modulation and coding, and codebook-based beamforming (precoding). This dissertation focuses on the joint optimization of multiuser downlink beamforming and discrete resource allocation in modern cellular networks. The problems studied in this thesis involve ...

Cheng, Yong — Technische Universität Darmstadt


Towards Massive Connectivity via Uplink Code-Domain NOMA

Abstract Future mobile networks are envisioned to provide wireless access to a massive number of devices. The substantial increase in connectivity comes mainly from machine-type communication (MTC), for which a large number of low-rate transmissions take place. Accommodating access for such a large number of user equipment (UEs) can be inefficient if applied to current network architectures, which are mainly based on orthogonal multiple access (OMA) and scheduling-based transmissions. This is due to the resulting control overhead and increased access delay. The framework of non-orthogonal multiple access (NOMA) has attracted attention recently as a promising solution to tackle these issues. It allows multiple UEs to access the network simultaneously over the same resources, and provides naturally, the support for grant-free access, in which no explicit scheduling of the UEs is required. Motivated by the potential benefits of NOMA in enabling ...

Bashar Tahir — TU Wien

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.