Monitoring Infants by Automatic Video Processing

This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 2‰ live births, 11‰ for preterm ...

Cattani Luca — University of Parma (Italy)


Advances in unobtrusive monitoring of sleep apnea using machine learning

Obstructive sleep apnea (OSA) is among the most prevalent sleep disorders, which is estimated to affect 6 %−19 % of women and 13 %−33 % of men. Besides daytime sleepiness, impaired cognitive functioning and an increased risk for accidents, OSA may lead to obesity, diabetes and cardiovascular diseases (CVD) on the long term. Its prevalence is only expected to rise, as it is linked to aging and excessive body fat. Nevertheless, many patients remain undiagnosed and untreated due to the cumbersome clinical diagnostic procedures. For this, the patient is required to sleep with an extensive set of body attached sensors. In addition, the recordings only provide a single night perspective on the patient in an uncomfortable, and often unknown, environment. Thus, large scale monitoring at home is desired with comfortable sensors, which can stay in place for several nights. To ...

Huysmans, Dorien — KU Leuven


Mining the ECG: Algorithms and Applications

This research focuses on the development of algorithms to extract diagnostic information from the ECG signal, which can be used to improve automatic detection systems and home monitoring solutions. In the first part of this work, a generically applicable algorithm for model selection in kernel principal component analysis is presented, which was inspired by the derivation of respiratory information from the ECG signal. This method not only solves a problem in biomedical signal processing, but more importantly offers a solution to a long-standing problem in the field of machine learning. Next, a methodology to quantify the level of contamination in a segment of ECG is proposed. This level is used to detect artifacts, and to improve the performance of different classifiers, by removing these artifacts from the training set. Furthermore, an evaluation of three different methodologies to compute the ECG-derived ...

Varon, Carolina — KU Leuven


Multimodal signal analysis for unobtrusive characterization of obstructive sleep apnea

Obstructive sleep apnea (OSA) is the most prevalent sleep related breathing disorder, nevertheless subjects suffering from it often remain undiagnosed due to the cumbersome diagnosis procedure. Moreover, the prevalence of OSA is increasing and a better phenotyping of patients is needed in order to prioritize treatment. The goal of this thesis was to tackle those challenges in OSA diagnosis. Additionally, two main algorithmic contributions which are generally applicable were proposed within this thesis. The binary interval coded scoring algorithm was extended to multilevel problems and novel monotonicity constraints were introduced. Moreover, improvements to the random-forest based feature selection were proposed including the use of the Cohen’s kappa value, patient independent validation, and further feature pruning steered by the correlation between features. These novel methods were applied together with classification and feature selection methods from the literature to improve the OSA ...

Deviaene, Margot — KU Leuven


Detection of epileptic seizures based on video and accelerometer recordings

Epilepsy is one of the most common neurological diseases, especially in children. And although the majority of patients can be treated through medication or surgery (70%-75%), a significant group of patients cannot be treated. For this latter group of patients it is advisable to follow the evolution of the disease. This can be done through a long-term automatic monitoring, which gives an objective measure of the number of seizures that the patient has, for example during the night. On the other hand, there is a reduced social control overnight and the parents or caregivers can miss some seizures. In severe seizures, it is sometimes necessary, however, to avoid dangerous situations during or after the seizure (e.g. the danger of suffocation caused by vomiting or a position that obstructs breathing, or the risk of injury during violent movements), and to comfort ...

Cuppens, Kris — Katholieke Universiteit Leuven


Cardiorespiratory dynamics: algorithms and application to mental stress monitoring

The rate at which our heart beats, is a dynamical process enabling adaptive changes according to the demands of our body. These variations in heart rate are widely studied in so-called heart rate variability (HRV) analyses, as they contain much information about the activity of our autonomic nervous system. Variability in the heart rate arises from several processes, such as thermoregulation, hormones, arterial blood pressure, respiration, etc. One of the main short-term modulators of the heart rate is respiration. This phenomenon is called respiratory sinus arrhythmia (RSA) and comprises the rhythmic fluctuation of the heart rate at respiratory frequency. It has also widely been used as an index of vagal outflow. However, this has been widely debated as some studies have shown that the magnitude of RSA changes with respiratory rate and the depth of breathing, independently of parasympathetic activity. ...

Widjaja, Devy — KU Leuven


Respiratory sinus arrhythmia estimation : closing the gap between research and applications

The respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling in which the heart rate accelerates during inhalation and decelerates during exhalation. Its quantification has been suggested as a tool to assess different diseases and conditions. However, whilst the potential of the RSA estimation as a diagnostic tool is shown in research works, its use in clinical practice and mobile applications is rather limited. This can be attributed to the lack of understanding of the mechanisms generating the RSA. To try to explain the RSA, studies are done using noninvasive signals, namely, respiration and heart rate variability (HRV), which are combined using different algorithms. Nevertheless, the algorithms are not standardized, making it difficult to draw solid conclusions from these studies. Therefore, the first aim of this thesis was to develop a framework to evaluate algorithms for RSA estimation. To ...

Morales, John — KU Leuven


Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven


Biomechanics based analysis of sleep

The fact that a third of a human life is spent in a bed indicates the essential character of sleep. While some people might opt voluntarily for sleep deprivation, others don’t get to choose. Their healthy pattern of sleep is disrupted due to sleep disorders such as sleep apnea, insomnia and restless legs syndrome. Most clinical diagnoses revolve around complaints of excessive daytime sleepiness. People usually wait quite long however before contacting professional help, and might only do so when complaints have gone from minor to serious. It can be argued that people with minor complaints will have negligible compliance to rather obtrusive therapies, and should not be treated with pharmaceuticals. However, cognitive and behavioral therapy has proven its effectiveness for clinically diagnosed patients in different domains, and might thus also enhance the quality of life for people with minor ...

Willemen, Tim — KU Leuven


Continuous respiratory rate monitoring to detect clinical deteriorations using wearable sensors

Acutely-ill hospitalised patients are at risk of clinical deteriorations in health leading to adverse events such as cardiac arrests. Deteriorations are currently detected by manually measuring physiological parameters every 4-6 hours. Consequently, deteriorations can remain unrecognised between assessments, delaying clinical intervention. It may be possible to provide earlier detection of deteriorations by using wearable sensors for continuous physiological monitoring. Respiratory rate (RR) is not commonly monitored by wearable sensors, despite being a sensitive marker of deteriorations. This thesis presents investigations to identify an algorithm suitable for estimating RR from two signals commonly acquired by wearable sensors: the electrocardiogram (ECG) and photoplethysmogram (PPG). A suitable algorithm was then used to estimate RRs retrospectively from a physiological dataset acquired from acutely-ill patients to assess the potential utility of wearable sensors for detecting deteriorations. Existing RR algorithms were identi ed through a systematic ...

Charlton, Peter — King's College London


Machine Learning-Aided Monitoring and Prediction of Respiratory and Neurodegenerative Diseases Using Wearables

This thesis focuses on wearables for health status monitoring, covering applications aimed at emergency solutions to the COVID-19 pandemic and aging society. The methods of ambient assisted living (AAL) are presented for the neurodegenerative disease Parkinson’s disease (PD), facilitating ’aging in place’ thanks to machine learning and around wearables - solutions of mHealth. Furthermore, the approaches using machine learning and wearables are discussed for early-stage COVID-19 detection, with encouraging accuracy. Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control data was reused for research purposes. The solution presented in this thesis is considering the classification problem and outperformed the state-of-the-art methods, whereas the original paper introduced just anomaly detection and not shown the specificity of the created models. The proposed model in the thesis for early detection of COVID-19 achieved 78 % for the k-NN classifier. Moreover, a ...

Justyna Skibińska — Brno University of Technology & Tampere University


Visual Analysis of Faces with Application in Biometrics, Forensics and Health Informatics

Computer vision-based analysis of human facial video provides information regarding to expression, diseases symptoms, and physiological parameters such as heartbeat rate, blood pressure and respiratory rate. It also provides a convenient source of heartbeat signal to be used in biometrics and forensics. This thesis is a collection of works done in five themes in the realm of computer vision-based facial image analysis: Monitoring elderly patients at private homes, Face quality assessment, Measurement of physiological parameters, Contact-free heartbeat biometrics, and Decision support system for healthcare. The work related to monitoring elderly patients at private homes includes a detailed survey and review of the monitoring technologies relevant to older patients living at home by discussing previous reviews and relevant taxonomies, different scenarios for home monitoring solutions for older patients, sensing and data acquisition techniques, data processing and analysis techniques, available datasets for ...

Haque, Mohammad Ahsanul — Aalborg Univeristy


Advanced tools for ambulatory ECG and respiratory analysis

The electrocardiogram or ECG is a relatively easy-to-record signal that contains an enormous amount of potentially useful information. It is currently mostly being used for screening purposes. For example, pre-participation cardiovascular screening of young athletes has been endorsed by both scientific organisations and sporting governing bodies. A typical cardiac examination is taken in a hospital environment and lasts 10 seconds. This is often sufficient to detect major pathologies, yet this small sample size of the heart’s functioning can be deceptive when used to evaluate one’s general condition. A solution for this problem is to monitor the patient outside of the hospital, during a longer period of time. Due to the extension of the analysis period, the detection rate of cardiac events can be highly increased, compared to the cardiac exam in the hospital. However, it also increases the likelihood of ...

Moeyersons, Jonathan — KU Leuven


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Signal processing for monitoring cerebral hemodynamics in neonates

Disturbances in cerebral hemodynamics are one of the principal causes of cerebral damage in premature infants. Specifically, changes in cerebral blood flow might cause ischemia or hemorrhage that can lead to motor and developmental disabilities. Under normal circumstances, there are several mechanisms that act jointly to preserve cerebral hemodynamics homeostasis. However, in case that one of these mechanisms is disrupted the brain is exposed to damage. Premature infants are susceptible to variations in cerebral circulation due to their fragility. Therefore, monitoring cerebral hemodynamics is of vital importance in order to prevent brain damage in this population and avoid subsequent sequelae. This thesis is oriented to the development of signal processing techniques that can be of help in monitoring cerebral hemodynamics in neonates. There are several problems that hinder the use in clinical practice of monitoring cerebral hemodynamics. On one hand, ...

Caicedo Dorado, Alexander — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.