Abstract / truncated to 115 words (read the full abstract)

Acutely-ill hospitalised patients are at risk of clinical deteriorations in health leading to adverse events such as cardiac arrests. Deteriorations are currently detected by manually measuring physiological parameters every 4-6 hours. Consequently, deteriorations can remain unrecognised between assessments, delaying clinical intervention. It may be possible to provide earlier detection of deteriorations by using wearable sensors for continuous physiological monitoring. Respiratory rate (RR) is not commonly monitored by wearable sensors, despite being a sensitive marker of deteriorations. This thesis presents investigations to identify an algorithm suitable for estimating RR from two signals commonly acquired by wearable sensors: the electrocardiogram (ECG) and photoplethysmogram (PPG). A suitable algorithm was then used to estimate RRs retrospectively from a physiological ... toggle 7 keywords

electrocardiogram photoplethysmogram respiratory rate signal processing wearable sensors patient monitoring early warning score


Charlton, Peter
King's College London
Publication Year
Upload Date
Sept. 27, 2019

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.