Adaptive Edge-Enhanced Correlation Based Robust and Real-Time Visual Tracking Framework and Its Deployment in Machine Vision Systems

An adaptive edge-enhanced correlation based robust and real-time visual tracking framework, and two machine vision systems based on the framework are proposed. The visual tracking algorithm can track any object of interest in a video acquired from a stationary or moving camera. It can handle the real-world problems, such as noise, clutter, occlusion, uneven illumination, varying appearance, orientation, scale, and velocity of the maneuvering object, and object fading and obscuration in low contrast video at various zoom levels. The proposed machine vision systems are an active camera tracking system and a vision based system for a UGV (unmanned ground vehicle) to handle a road intersection. The core of the proposed visual tracking framework is an Edge Enhanced Back-propagation neural-network Controlled Fast Normalized Correlation (EE-BCFNC), which makes the object localization stage efficient and robust to noise, object fading, obscuration, and uneven ...

Ahmed, Javed — Electrical (Telecom.) Engineering Department, National University of Sciences and Technology, Rawalpindi, Pakistan.


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

The first part of this dissertation considers distributed learning problems over networked agents. The general objective of distributed adaptation and learning is the solution of global, stochastic optimization problems through localized interactions and without information about the statistical properties of the data. Regularization is a useful technique to encourage or enforce structural properties on the resulting solution, such as sparsity or constraints. A substantial number of regularizers are inherently non-smooth, while many cost functions are differentiable. We propose distributed and adaptive strategies that are able to minimize aggregate sums of objectives. In doing so, we exploit the structure of the individual objectives as sums of differentiable costs and non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to continuously track drifts in the problem; their recursions, however, are subject to persistent perturbations arising from the stochastic nature of ...

Vlaski, Stefan — University of California, Los Angeles


Gait Analysis in Unconstrained Environments

Gait can be defined as the individuals’ manner of walking. Its analysis can provide significant information about their identity and health, opening a wide range of possibilities in the field of biometric recognition and medical diagnosis. In the field of biometric, the use of gait to perform recognition can provide advantages, such as acquisition from a distance and without the cooperation of the individual being observed. In the field of medicine, gait analysis can be used to detect or assess the development of different gait related pathologies. It can also be used to assess neurological or systemic disorders as their effects are reflected in the individuals’ gait. This Thesis focuses on performing gait analysis in unconstrained environments, using a single 2D camera. This can be a challenging task due to the lack of depth information and self-occlusions in a 2D ...

Tanmay Tulsidas Verlekar — UNIVERSIDADE DE LISBOA, INSTITUTO SUPERIOR TÉCNICO


Predictive modelling and deep learning for quantifying human health

Machine learning and deep learning techniques have emerged as powerful tools for addressing complex challenges across diverse domains. These methodologies are powerful because they extract patterns and insights from large and complex datasets, automate decision-making processes, and continuously improve over time. They enable us to observe and quantify patterns in data that a normal human would not be able to capture, leading to deeper insights and more accurate predictions. This dissertation presents two research papers that leverage these methodologies to tackle distinct yet interconnected problems in neuroimaging and computer vision for the quantification of human health. The first investigation, "Age prediction using resting-state functional MRI," addresses the challenge of understanding brain aging. By employing the Least Absolute Shrinkage and Selection Operator (LASSO) on resting-state functional MRI (rsfMRI) data, we identify the most predictive correlations related to brain age. Our study, ...

Chang Jose — National Cheng Kung University


Voice biometric system security: Design and analysis of countermeasures for replay attacks

Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...

Bhusan Chettri — Queen Mary University of London


Camera based motion estimation and recognition for human-computer interaction

Communicating with mobile devices has become an unavoidable part of our daily life. Unfortunately, the current user interface designs are mostly taken directly from desktop computers. This has resulted in devices that are sometimes hard to use. Since more processing power and new sensing technologies are already available, there is a possibility to develop systems to communicate through different modalities. This thesis proposes some novel computer vision approaches, including head tracking, object motion analysis and device ego-motion estimation, to allow efficient interaction with mobile devices. For head tracking, two new methods have been developed. The first method detects a face region and facial features by employing skin detection, morphology, and a geometrical face model. The second method, designed especially for mobile use, detects the face and eyes using local texture features. In both cases, Kalman filtering is applied to estimate ...

Hannuksela, Jari — University of Oulou


Representation Learning and Information Fusion: Applications in Biomedical Image Processing

In recent years Machine Learning and in particular Deep Learning have excelled in object recognition and classification tasks in computer vision. As these methods extract features from the data itself by learning features that are relevant for a particular task, a key aspect of this remarkable success is the amount of data on which these methods train. Biomedical applications face the problem that the amount of training data is limited. In particular, labels and annotations are usually scarce and expensive to obtain as they require biological or medical expertise. One way to overcome this issue is to use additional knowledge about the data at hand. This guidance can come from expert knowledge, which puts focus on specific, relevant characteristics in the images, or geometric priors which can be used to exploit the spatial relationships in the images. This thesis presents ...

Elisabeth Wetzer — Uppsala University


Audio Visual Speech Enhancement

This thesis presents a novel approach to speech enhancement by exploiting the bimodality of speech production and the correlation that exists between audio and visual speech information. An analysis into the correlation of a range of audio and visual features reveals significant correlation to exist between visual speech features and audio filterbank features. The amount of correlation was also found to be greater when the correlation is analysed with individual phonemes rather than across all phonemes. This led to building a Gaussian Mixture Model (GMM) that is capable of estimating filterbank features from visual features. Phoneme-specific GMMs gave lower filterbank estimation errors and a phoneme transcription is decoded using audio-visual Hidden Markov Model (HMM). Clean filterbank estimates along with mean noise estimates were then utilised to construct visually-derived Wiener filters that are able to enhance noisy speech. The mean noise ...

Almajai, Ibrahim — University of East Anglia


Real Time Stereo to Multi-view Video Conversion

A novel and efficient methodology is presented for the conversion of stereo to multi-view video in order to address the 3D content requirements for the next generation 3D-TVs and auto-stereoscopic multi-view displays. There are two main algorithmic blocks in such a conversion system; stereo matching and virtual view rendering that enable extraction of 3D information from stereo video and synthesis of inexistent virtual views, respectively. In the intermediate steps of these functional blocks, a novel edge-preserving filter is proposed that recursively constructs connected support regions for each pixel among color-wise similar neighboring pixels. The proposed recursive update structure eliminates pre-defined window dependency of the conventional approaches, providing complete content adaptibility with quite low computational complexity. Based on extensive tests, it is observed that the proposed filtering technique yields better or competetive results against some leading techniques in the literature. The ...

Cigla, Cevahir — Middle East Technical University


A Geometric Deep Learning Approach to Sound Source Localization and Tracking

The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy ...

Diaz-Guerra, David — University of Zaragoza


An Attention Model and its Application in Man-Made Scene Interpretation

The ultimate aim of research into computer vision is designing a system which interprets its surrounding environment in a similar way the human can do effortlessly. However, the state of technology is far from achieving such a goal. In this thesis different components of a computer vision system that are designed for the task of interpreting man-made scenes, in particular images of buildings, are described. The flow of information in the proposed system is bottom-up i.e., the image is first segmented into its meaningful components and subsequently the regions are labelled using a contextual classifier. Starting from simple observations concerning the human vision system and the gestalt laws of human perception, like the law of 'good (simple) shape' and 'perceptual grouping', a blob detector is developed, that identifies components in a 2D image. These components are convex regions of interest, ...

Jahangiri, Mohammad — Imperial College London


Biological Image Analysis

In biological research images are extensively used to monitor growth, dynamics and changes in biological specimen, such as cells or plants. Many of these images are used solely for observation or are manually annotated by an expert. In this dissertation we discuss several methods to automate the annotating and analysis of bio-images. Two large clusters of methods have been investigated and developed. A first set of methods focuses on the automatic delineation of relevant objects in bio-images, such as individual cells in microscopic images. Since these methods should be useful for many different applications, e.g. to detect and delineate different objects (cells, plants, leafs, ...) in different types of images (different types of microscopes, regular colour photographs, ...), the methods should be easy to adjust. Therefore we developed a methodology relying on probability theory, where all required parameters can easily ...

De Vylder, Jonas — Ghent University


Motion Estimation and Compensation of Video Sequences using Affine Transforms

Motion estimation and compensation is of great importance for the compression of video sequences. In this dissertation a motion estimation/compensation approach based on a non-overlapping connected mesh of triangles is proposed. To manipulate the triangles within the connected mesh or ‘rubber sheet’ structure affin transforms are used which allow many different types of motion to be accurately modelled. Another advantage of this structure is that the non-overlapping triangles do not generate the typical artefacts associated with the current block based standards when operating at very low bitrates. The initial motion estimation/ compensation algorithms investigated implement a full search method which updates one vertex at a time matching sets of triangles between adjacent frames. Although the prediction performance is good the resulting computational load is high. This issue is addressed by deriving gradient-based algorithms which are found to be between one ...

Bradshaw, David Benedict — University of Cambridge


Sensor Fusion for Automotive Applications

Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...

Lundquist, Christian — Linköping University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.