Abstract / truncated to 115 words (read the full abstract)

Estimating object motion is one of the key components of video processing and the first step in applications which require video representation. Visual object tracking is one way of extracting this component, and it is one of the major problems in the field of computer vision. Numerous discriminative and generative machine learning approaches have been employed to solve this problem. Recently, correlation filter based (CFB) approaches have been popular due to their computational efficiency and notable performances on benchmark datasets. The ultimate goal of CFB approaches is to find a filter (i.e., template) which can produce high correlation outputs around the actual object location and low correlation outputs around the locations that are far from ... toggle 4 keywords

visual object tracking mixture of experts correlation filters convolutional neural networks


Gundogdu, Erhan
Middle East Technical University
Publication Year
Upload Date
March 6, 2018

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.