A Computational Framework for Sound Segregation in Music Signals

Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...

Martins, Luis Gustavo — Universidade do Porto


Probabilistic Model-Based Multiple Pitch Tracking of Speech

Multiple pitch tracking of speech is an important task for the segregation of multiple speakers in a single-channel recording. In this thesis, a probabilistic model-based approach for estimation and tracking of multiple pitch trajectories is proposed. A probabilistic model that captures pitch-dependent characteristics of the single-speaker short-time spectrum is obtained a priori from clean speech data. The resulting speaker model, which is based on Gaussian mixture models, can be trained either in a speaker independent (SI) or a speaker dependent (SD) fashion. Speaker models are then combined using an interaction model to obtain a probabilistic description of the observed speech mixture. A factorial hidden Markov model is applied for tracking the pitch trajectories of multiple speakers over time. The probabilistic model-based approach is capable to explicitly incorporate timbral information and all associated uncertainties of spectral structure into the model. While ...

Wohlmayr, Michael — Graz University of Technology


Sound Source Separation in Monaural Music Signals

Sound source separation refers to the task of estimating the signals produced by individual sound sources from a complex acoustic mixture. It has several applications, since monophonic signals can be processed more efficiently and flexibly than polyphonic mixtures. This thesis deals with the separation of monaural, or, one-channel music recordings. We concentrate on separation methods, where the sources to be separated are not known beforehand. Instead, the separation is enabled by utilizing the common properties of real-world sound sources, which are their continuity, sparseness, and repetition in time and frequency, and their harmonic spectral structures. One of the separation approaches taken here use unsupervised learning and the other uses model-based inference based on sinusoidal modeling. Most of the existing unsupervised separation algorithms are based on a linear instantaneous signal model, where each frame of the input mixture signal is modeled ...

Virtanen, Tuomas — Tampere University of Technology


Interactive Real-time Musical Systems

This thesis focuses on the development of automatic accompaniment sys- tems. We investigate previous systems and look at a range of approaches that have been attempted for the problem of beat tracking. Most beat trackers are intended for the purposes of music information retrieval where a ‘black box’ approach is tested on a wide variety of music genres. We highlight some of the difficulties facing offline beat trackers and design a new approach for the problem of real-time drum tracking, developing a system, B-Keeper, which makes reasonable assumptions on the nature of the signal and is provided with useful prior knowledge. Having developed the system with offline studio recordings, we look to test the system with human players. Existing offline evaluation methods seem less suitable for a performance system, since we also wish to evaluate the interaction between musician and ...

Robertson, Andrew — Queen Mary, University of London


Reverse Audio Engineering for Active Listening and Other Applications

This work deals with the problem of reverse audio engineering for active listening. The format under consideration corresponds to the audio CD. The musical content is viewed as the result of a concatenation of the composition, the recording, the mixing, and the mastering. The inversion of the two latter stages constitutes the core of the problem at hand. The audio signal is treated as a post-nonlinear mixture. Thus, the mixture is “decompressed” before being “decomposed” into audio tracks. The problem is tackled in an informed context: The inversion is accompanied by information which is specific to the content production. In this manner, the quality of the inversion is significantly improved. The information is reduced in size by the use of quantification and coding methods, and some facts on psychoacoustics. The proposed methods are applicable in real time and have a ...

Gorlow, Stanislaw — Université Bordeaux 1


Melody Extraction from Polyphonic Music Signals

Music was the first mass-market industry to be completely restructured by digital technology, and today we can have access to thousands of tracks stored locally on our smartphone and millions of tracks through cloud-based music services. Given the vast quantity of music at our fingertips, we now require novel ways of describing, indexing, searching and interacting with musical content. In this thesis we focus on a technology that opens the door to a wide range of such applications: automatically estimating the pitch sequence of the melody directly from the audio signal of a polyphonic music recording, also referred to as melody extraction. Whilst identifying the pitch of the melody is something human listeners can do quite well, doing this automatically is highly challenging. We present a novel method for melody extraction based on the tracking and characterisation of the pitch ...

Salamon, Justin — Universitat Pompeu Fabra


Automatic Transcription of Polyphonic Music Exploiting Temporal Evolution

Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estimation for monophonic signals is considered to be solved, the creation of an automated system able to transcribe polyphonic music without setting restrictions on the degree of polyphony and the instrument type still remains open. In this thesis, research on automatic transcription is performed by explicitly incorporating information on the temporal evolution of sounds. First efforts address the problem by focusing on signal processing techniques and by proposing audio features utilising temporal characteristics. Techniques for note onset and offset detection are also utilised for improving ...

Benetos, Emmanouil — Centre for Digital Music, Queen Mary University of London


Contributions to Single-Channel Speech Enhancement with a Focus on the Spectral Phase

Single-channel speech enhancement refers to the reduction of noise signal components in a single-channel signal composed of both speech and noise. Spectral speech enhancement methods are among the most popular approaches to solving this problem. Since the short-time spectral amplitude has been identified as a highly perceptually relevant quantity, most conventional approaches rely on processing the amplitude spectrum only, ignoring any information that may be contained in the spectral phase. As a consequence, the noisy short-time spectral phase is neither enhanced for the purpose of signal reconstruction nor is it used for refining short-time spectral amplitude estimates. This thesis investigates the use of the spectral phase and its structure in algorithms for single-channel speech enhancement. This includes the analysis of the spectral phase in the context of theoretically optimal speech estimators. The resulting knowledge is exploited in formulating single-channel speech ...

Johannes Stahl — Graz University of Technology


Decompositions Parcimonieuses Structurees: Application a la presentation objet de la musique

The amount of digital music available both on the Internet and by each listener has considerably raised for about ten years. The organization and the accessibillity of this amount of data demand that additional informations are available, such as artist, album and song names, musical genre, tempo, mood or other symbolic or semantic attributes. Automatic music indexing has thus become a challenging research area. If some tasks are now correctly handled for certain types of music, such as automatic genre classification for stereotypical music, music instrument recoginition on solo performance and tempo extraction, others are more difficult to perform. For example, automatic transcription of polyphonic signals and instrument ensemble recognition are still limited to some particular cases. The goal of our study is not to obain a perfect transcription of the signals and an exact classification of all the instruments ...

Leveau, Pierre — Universite Pierre et Marie Curie, Telecom ParisTech


Signal Separation of Musical Instruments

This thesis presents techniques for the modelling of musical signals, with particular regard to monophonic and polyphonic pitch estimation. Musical signals are modelled as a set of notes, each comprising of a set of harmonically-related sinusoids. An hierarchical model is presented that is very general and applicable to any signal that can be decomposed as the sum of basis functions. Parameter estimation is posed within a Bayesian framework, allowing for the incorporation of prior information about model parameters. The resulting posterior distribution is of variable dimension and so reversible jump MCMC simulation techniques are employed for the parameter estimation task. The extension of the model to time-varying signals with high posterior correlations between model parameters is described. The parameters and hyperparameters of several frames of data are estimated jointly to achieve a more robust detection. A general model for the ...

Walmsley, Paul Joseph — University of Cambridge


Post-Filter Optimization for Multichannel Automotive Speech Enhancement

In an automotive environment, quality of speech communication using a hands-free equipment is often deteriorated by interfering car noise. In order to preserve the speech signal without car noise, a multichannel speech enhancement system including a beamformer and a post-filter can be applied. Since employing a beamformer alone is insufficient to substantially reducing the level of car noise, a post-filter has to be applied to provide further noise reduction, especially at low frequencies. In this thesis, two novel post-filter designs along with their optimization for different driving conditions are presented. The first post-filter design utilizes an adaptive smoothing factor for the power spectral density estimation as well as a hybrid noise coherence function. The hybrid noise coherence function is a mixture of the diffuse and the measured noise coherence functions for a specific driving condition. The second post-filter design applies ...

Yu, Huajun — Technische Universität Braunschweig


Advances in Glottal Analysis and its Applications

From artificial voices in GPS to automatic systems of dictation, from voice-based identity verification to voice pathology detection, speech processing applications are nowadays omnipresent in our daily life. By offering solutions to companies seeking for efficiency enhancement with simultaneous cost saving, the market of speech technology is forecast to be especially promising in the next years. The present thesis deals with advances in glottal analysis in order to incorporate new techniques within speech processing applications. While current systems are usually based on information related to the vocal tract configuration, the airflow passing through the vocal folds, and called glottal flow, is expected to exhibit a relevant complementarity. Unfortunately, glottal analysis from speech recordings requires specific complex processing operations, which explains why it has been generally avoided. The main goal of this thesis is to provide new advances in glottal analysis ...

Drugman, Thomas — Universite de Mons


The use of High-Order Sparse Linear Prediction for the Restoration of Archived Audio

Since the invention of Gramophone by Thomas Edison in 1877, vast amounts of cultural, entertainment, educational and historical audio recordings have been recorded and stored throughout the world. Through natural aging and improper storage, the recorded signal degrades and loses its information in terms of quality and intelligibility. Degradation of audio signals is considered as any unwanted modification to the audio signal after it has been recorded. There are different degradations affecting recorded signals on analog storage media. The degradations that are often encountered are clicks, hiss and ‘Wow and Flutter’. Several researches have been conducted in restoring degraded audio recordings. Most of the methods rely on some prior information of the underlying data and the degradation process. The success of these methods heavily depends on the prior information available. When such information is not available, a model of the ...

Dufera, Bisrat Derebssa — School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa University


Techniques for improving the performance of distributed video coding

Distributed Video Coding (DVC) is a recently proposed paradigm in video communication, which fits well emerging applications such as wireless video surveillance, multimedia sensor networks, wireless PC cameras, and mobile cameras phones. These applications require a low complexity encoding, while possibly affording a high complexity decoding. DVC presents several advantages: First, the complexity can be distributed between the encoder and the decoder. Second, the DVC is robust to errors, since it uses a channel code. In DVC, a Side Information (SI) is estimated at the decoder, using the available decoded frames, and used for the decoding and reconstruction of other frames. In this Ph.D thesis, we propose new techniques in order to improve the quality of the SI. First, successive refinement of the SI is performed after each decoded DCT band, using a Partially Decoded WZF (PDWZF), along with the ...

Abou-Elailah, Abdalbassir — Telecom Paristech


Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We consider the periodic signals basically as the sum of harmonics. Therefore, we can pass the noisy signals through bandpass filters centered at the frequencies of the harmonics to enhance the signal. In addition, although the frequencies of the harmonics are the ...

Karimian-Azari, Sam — Aalborg Univeristy

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.