Speech Enhancement Using Data-Driven Concepts

Speech communication frequently suffers from transmitted background noises. Numerous speech enhancement algorithms have thus been proposed to obtain a speech signal with a reduced amount of background noise and better speech quality. In most cases they are analytically derived as spectral weighting rules for given error criteria along with statistical models of the speech and noise spectra. However, as these spectral distributions are indeed not easy to be measured and modeled, such algorithms achieve in practice only a suboptimal performance. In the development of state-of-the-art algorithms, speech and noise training data is commonly exploited for the statistical modeling of the respective spectral distributions. In this thesis, the training data is directly applied to train data-driven speech enhancement algorithms, avoiding any modeling of the spectral distributions. Two applications are proposed: (1) A set of spectral weighting rules is trained from noise ...

Suhadi — Technische Universität Braunschweig


Contributions to Wideband Hands-free Systems and their Evaluation

This work deals with the advancement of wideband hands-free systems (HFS’s) for mono- and stereophonic cases of application. Furthermore, innovative contributions to the corr. field of quality evaluation are made. The proposed HFS approaches are based on frequency-domain adaptive filtering for system identification, making use of Kalman theory and state-space modeling. Functional enhancement modules are developed in this work, which improve one or more of key quality aspects, aiming at not to harm others. In so doing, these modules can be combined in a flexible way, dependent on the needs at hand. The enhanced monophonic HFS is evaluated according to automotive ITU-T recommendations, to prove its customized efficacy. Furthermore, a novel methodology and techn. framework are introduced in this work to improve the prototyping and evaluation process of automotive HF and in-car-communication (ICC) systems. The monophonic HFS in several configurations ...

Jung, Marc-André — Technische Universität Braunschweig


Advances in DFT-Based Single-Microphone Speech Enhancement

The interest in the field of speech enhancement emerges from the increased usage of digital speech processing applications like mobile telephony, digital hearing aids and human-machine communication systems in our daily life. The trend to make these applications mobile increases the variety of potential sources for quality degradation. Speech enhancement methods can be used to increase the quality of these speech processing devices and make them more robust under noisy conditions. The name "speech enhancement" refers to a large group of methods that are all meant to improve certain quality aspects of these devices. Examples of speech enhancement algorithms are echo control, bandwidth extension, packet loss concealment and noise reduction. In this thesis we focus on single-microphone additive noise reduction and aim at methods that work in the discrete Fourier transform (DFT) domain. The main objective of the presented research ...

Hendriks, Richard Christian — Delft University of Technology


Adaptive Noise Cancelation in Speech Signals

Today, adaptive algorithms represent one of the most frequently used computational tools for the processing of digital speech signals. This work investigates and analyzes the properties of adaptive algorithms in speech communication applications where rigorous conditions apply, such as noise and echo cancelation. Like other theses in this field do, it tries to tackle the ever-lasting problem of computational complexity vs. rate of convergence. It introduces some new adaptive methods that stem from the existing algorithms as well as a novel concept which has been entitled Optimal Step-Size (OSS). In the first part of the thesis we investigate some well-known, widely used adaptive techniques such as the Normalized Least Mean Squares (NLMS) and the Recursive Least Mean Squares (RLS). In spite of the fact that the NLMS and the RLS belong to the "simplest" principles, as far as complexity is ...

Malenovsky, Vladimir — Department of Telecommunications, Brno University of Technology, Czech Republic


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven


Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs

Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...

Han, Sai — Technische Universität Braunschweig


Post-Filter Optimization for Multichannel Automotive Speech Enhancement

In an automotive environment, quality of speech communication using a hands-free equipment is often deteriorated by interfering car noise. In order to preserve the speech signal without car noise, a multichannel speech enhancement system including a beamformer and a post-filter can be applied. Since employing a beamformer alone is insufficient to substantially reducing the level of car noise, a post-filter has to be applied to provide further noise reduction, especially at low frequencies. In this thesis, two novel post-filter designs along with their optimization for different driving conditions are presented. The first post-filter design utilizes an adaptive smoothing factor for the power spectral density estimation as well as a hybrid noise coherence function. The hybrid noise coherence function is a mixture of the diffuse and the measured noise coherence functions for a specific driving condition. The second post-filter design applies ...

Yu, Huajun — Technische Universität Braunschweig


Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

Audio systems receive the speech signals of interest usually in the presence of noise. The noise has profound impacts on the quality and intelligibility of the speech signals, and it is therefore clear that the noisy signals must be cleaned up before being played back, stored, or analyzed. We can estimate the speech signal of interest from the noisy signals using a priori knowledge about it. A human speech signal is broadband and consists of both voiced and unvoiced parts. The voiced part is quasi-periodic with a time-varying fundamental frequency (or pitch as it is commonly referred to). We consider the periodic signals basically as the sum of harmonics. Therefore, we can pass the noisy signals through bandpass filters centered at the frequencies of the harmonics to enhance the signal. In addition, although the frequencies of the harmonics are the ...

Karimian-Azari, Sam — Aalborg Univeristy


Signal processing algorithms for wireless acoustic sensor networks

Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...

Bertrand, Alexander — Katholieke Universiteit Leuven


Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement

In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...

Jarrett, Daniel P. — Imperial College London


Novel Methods in H.264/AVC (Inter Prediction, Data Hiding, Bit Rate Transcoding)

H.264 Advanced Video Coding has become the dominant video coding standard in the market, within a few years after the first version of the standard was completed by the ISO/IEC MPEG and the ITU-T VCEG groups in May 2003. That happened mainly due to the great coding efficiency of H.264. Compared to MPEG-2, the previous dominant standard, the H.264 compression ratio is about twice as higher for the same video quality. That makes H.264 ideal for a numerous of applications, such as video broadcasting, video streaming and video conferencing. However, the H.264 efficiency is achieved at the expense of the codec¢s complexity. H.264 complexity is about four times that of MPEG-2. As a consequence, many video coding issues, which have been addressed in previous standards, need to be re-considered. For example the H.264 encoding of a video in real time ...

Kapotas, Spyridon — Hellenic Open University


Stereoscopic depth map estimation and coding techniques for multiview video systems

The dissertation deals with the problems of stereoscopic depth estimation and coding in multiview video systems, which are vital for development of the next generation three-dimensional television. The depth estimation algorithms known from literature, along with theoretical foundations are discussed. The problem of estimation of depth maps with high quality, expressed by means of accuracy, precision and temporal consistency, has been stated. Next, original solutions have been proposed. Author has proposed a novel, theoretically founded approach to depth estimation which employs Maximum A posteriori Probability (MAP) rule for modeling of the cost function used in optimization algorithms. The proposal has been presented along with a method for estimation of parameters of such model. In order to attain that, an analysis of the noise existing in multiview video and a study of inter-view correlation of corresponding samples of pictures have been ...

Stankiewicz, Olgierd — Poznan University of Technology


Robust Speech Recognition on Intelligent Mobile Devices with Dual-Microphone

Despite the outstanding progress made on automatic speech recognition (ASR) throughout the last decades, noise-robust ASR still poses a challenge. Tackling with acoustic noise in ASR systems is more important than ever before for a twofold reason: 1) ASR technology has begun to be extensively integrated in intelligent mobile devices (IMDs) such as smartphones to easily accomplish different tasks (e.g. search-by-voice), and 2) IMDs can be used anywhere at any time, that is, under many different acoustic (noisy) conditions. On the other hand, with the aim of enhancing noisy speech, IMDs have begun to embed small microphone arrays, i.e. microphone arrays comprised of a few sensors close each other. These multi-sensor IMDs often embed one microphone (usually at their rear) intended to capture the acoustic environment more than the speaker’s voice. This is the so-called secondary microphone. While classical microphone ...

López-Espejo, Iván — University of Granada


Best Signal Selection with Automatic Delay Compensation in VoIP Environment

In the last decades, air traffic spread more and more in the world, connecting more and more places. At the same time, the need to manage all the flights correctly and securely increased. Air traffic authorities imposed and updated several standards for the air traffic management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, special voice communication systems (VCS) were developed. They ensure the communication between the pilots and the operators from the ground control centers. When a communication is initiated between the aircraft’s pilot and the ground air traffic control operator, various systems are used. The pilot speaks through the aircraft’s radio station and the signal is received by several ground radio stations. Then, the signal from each ground radio station arrives on different paths to the control center. Here one of the received ...

Marinescu, Radu-Sebastian — University Politehnica of Bucharest


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.