Generalized Noncoherent Ultra-Wideband Receivers

This thesis investigates noncoherent multi-channel ultra-wideband receivers. Noncoherent ultra-wideband receivers promise low power consumption and low processing complexity as they, in contrast to coherent receiver architectures, relinquish the need of complex carrier frequency and phase recovering. Unfortunately, their peak data rate is limited by the delay spread of the multipath radio channel. Noncoherent multi-channel receivers can break this rate limit due to their capability to demodulate multi-carrier signals. Such receivers use an analog front-end to separate the received signals into their sub-channels. In this work, the modeling and optimization of realistic front-end components is addressed and their impact on the system performance of noncoherent multi-channel ultra-wideband receivers is analyzed. With a proposed generalized mathematical framework, it is shown that there exists a variety of noncoherent multi-channel receiver types with similar system performance which differ only in their front-end filters. It ...

Pedroß-Engel, Andreas — Graz University of Technology

Low Complexity Ultra-Wideband (UWB) Communication Systems in Presence of Multiple-Access Interference

Ultra-wideband (UWB) communication systems use radio signals with a bandwidth in the range of some hundred MHz to several GHz. Radio channels with dense multipath propagation achieve high multipath diversity, which can be used to improve the robustness and capacity of the communication channel. Furthermore the large bandwidth allows to transmit signals with a small power spectral density such that the interference to other radio signals will be negligible, even if they lie within the same frequency band. In this work the focus is on low-complexity receiver architectures for communication systems in presence of multiple-access interference (MAI). The main objective of this thesis is to develop and to study a framework for communications for transmitted reference (TR) UWB systems and energy detection UWB systems. First, we study the hybrid matched-filter (HMF) receiver for TR UWB systems, which employs matched filters ...

Jimmy Baringbing — Graz University of Technology

Signal Processing for Ultra Wideband Transceivers

In this thesis novel implementation approaches for standardized and non-standardized ultra wide-band (UWB) systems are presented. These implementation approaches include signal processing algorithms to achieve processing of UWB signals in transceiver front-ends and in digital back-ends. A parallelization of the transceiver in the frequency-domain has been achieved with hybrid filterbank transceivers. The standardized MB-OFDM signaling scheme allows par- allelization in the frequency domain by distributing the orthogonal multicarrier modulation onto multiple units. Furthermore, the channel’s response to wideband signals has been parallelized in the frequency domain and the effects of the parallelization have been investi- gated. Slight performance decreases are observed, where the limiting effects are truncated sidelobes and filter mismatches in analog front-ends. Measures for the performance loss have been defined. For UWB signal generation, a novel broadband signal generation approach is presented. For that purpose, multiple digital-to-analog converters ...

Krall, Christoph — Graz University of Technology

Achievable Rates and Transceiver Design in Ultra-Wideband Communications

In a multipath dominated environment, ultra-wideband (UWB) systems that transmit trains of subnanosecond duration pulses exhibit the desirable property of fine resolution in time of the received paths, which as a result of the impulsive form of the transmitted signal go through fewer amplitude fluctuations than those emanating from systems with narrower bandwidths. Being distributed over a large number of resolvable paths, UWB signal energy is typically collected by the rake receiver. In this thesis, achievable information rates of time-hopping M-ary pulse position modulation UWB systems using either soft- or hard-decision outputs are calculated first, where one distinguishing characteristic observed for the hard-output systems is that increasing the constellation size is advantageous only at sufficiently large values of the code rate. Next, it is shown that with time division duplex UWB systems, for which channel information is available at the ...

Guney, Nazli — Bogazici University

Adaptive interference suppression algorithms for DS-UWB systems

In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...

Sheng Li — University of York

Ultra Wideband Radio Transmission Systems

This thesis includes a collection of papers that analyze and derive the properties of Ultra Wideband (UWB) radio systems that use Time Hopping for Multiple Access and binary Pulse Position Modulation. New families and generation methods of Time Hopping codes are proposed and properties in terms of cross -correlation, SNR, error probabilities are given. Moreover, interference issues are addressed and an analysis of radio frequency interference effects to a victim UWB receiver is presented. Finally, a cell search procedure in an asynchronous wireless network based on Ultra Wide Band (UWB) radio is proposed.

Iacobucci, Maria Stella — Universita degli studi di Roma La Sapienza

Low-Complexity Localization using Standard-Compliant UWB Signals

This thesis puts a focus on the analysis of key aspects of low-complexity Ultra Wideband (UWB) localizations systems. It is well known that UWB allows for highly robust and accurate ranging even in multipath intensive environments. On the other hand, the huge bandwidth leads to very challenging receiver designs and so low complexity and low power consumption are not achieveable for common receiver structures. The energy detector is a promising alternative. But in contrast to high-complexity coherent receivers, their performance is strongly dependent on the system parameters of the air interface protocol. IEEE 802.15.4a is a UWB standard with high-precision localization capability (better than 1m). The standard defines many system parameters, whose impact on the ranging and localization performance is studied in the thesis. These parameters have also a significant impact on the maximum allowed transmit energy, which limits the ...

Gigl, Thomas — Graz University of Technology

UWB Channel Fading Statistics and Transmitted-Reference Communication

It is well known that Ultra WideBand (UWB) transmission is inherently robust against small-scale-fading (SSF) that arises in multipath scattering environments, due to its large signal bandwidth. However, no model with a physical interpretation exists that relates the variations of received signal strength to the signal bandwidth and general channel parameters, like e.g. the average channel power delay profile. Such a model would be of relevance for e.g. system designers, who have to make tradeoffs between system aspects, like complexity and energy efficiency on one hand, and robustness against small-scale fading on the other hand. In this thesis, a model is presented that allows for such a tradeoff analysis, relating the average power delay profile parameters and signal bandwidth to the statistical properties of the SSF. Additionally, it is shown how the uncoded and coded BER of BPSK modulation can ...

Romme, Jac — Graz University of Technology

OFDM Air-Interface Design for Multimedia Communications

The aim of this dissertation is the investigation of the key issues encountered in the development of wideband radio air-interfaces. Orthogonal frequency-division multiplexing (OFDM) is considered as the enabling technology for transmitting data at extremely high rates over time-dispersive radio channels. OFDM is a transmission scheme, which splits up the data stream, sending the data symbols simultaneously at a drastically reduced symbol rate over a set of parallel sub-carriers. The first part of this thesis deals with the modeling of the time-dispersive and frequency-selective radio channel, utilizing second order Gaussian stochastic processes. A novel channel measurement technique is developed, in which the RMS delay spread of the channel is estimated from the level-crossing rate of the frequency-selective channel transfer function. This method enables the empirical channel characterization utilizing simplified non-coherent measurements of the received power versus frequency. Air-interface and multiple ...

Witrisal, Klaus — Delft University of Technology

Digital compensation of front-end non-idealities in broadband communication systems

The wireless communication industry has seen a tremendous growth in the last few decades. The ever increasing demand to stay connected at home, work, and on the move, with voice and data applications, has continued the need for more sophisticated end-user devices. A typical smart communication device these days consists of a radio system that can access a mixture of mobile cellular services (GSM, UMTS, etc), indoor wireless broadband services (WLAN-802.11b/g/n), short range and low energy personal communications (Bluetooth), positioning and navigation systems (GPS), etc. A smart device capable of meeting all these requirements has to be highly flexible and should be able to reconfigure radio transmitters and receivers as and when required. Further, the radio modules used in these devices should be extremely small so that the device itself is portable. In addition, the device should also be economical ...

Tandur, Deepaknath — Katholieke Universiteit Leuven

High-End Performance with Low-End Hardware: Analysis of Massive MIMO Base Station Transceivers

Massive MIMO (multiple-input–multiple-output) is a multi-antenna technology for cellular wireless communication, where the base station uses a large number of individually controllable antennas to multiplex users spatially. This technology can provide a high spectral efficiency. One of its main challenges is the immense hardware complexity and cost of all the radio chains in the base station. To make massive MIMO commercially viable, inexpensive, low-complexity hardware with low linearity has to be used, which inherently leads to more signal distortion. This thesis investigates how the degenerated linearity of some of the main components—power amplifiers, analog-to-digital converters (ADCs) and low-noise amplifiers—affects the performance of the system, with respect to data rate, power consumption and out-of-band radiation. The main results are: Spatial processing can reduce PAR (peak-to-average ratio) of the transmit signals in the downlink to as low as 0B; this, however, does ...

Mollén, Christopher — Linköpings universitet

Synchronization and Multipath Delay Estimation Algorithms for Digital Receivers

This thesis considers the development of synchronization and signal processing techniques for digital communication receivers, which is greatly influenced by the digital revolution of electronic systems. Eventhough synchronization concepts are well studied and established in the literature, there is always a need for new algorithms depending on new system requirements and new trends in receiver architecture design. The new trend of using digital receivers where the sampling of the baseband signal is performed by a free running oscillator reduces the analog components by performing most of the functions digitally, which increases the flexibility, configurability, and integrability of the receiver. Also, this new design approach contributes greatly to the software radio (SWR) concept which is the natural progression of digital radio receivers towards multimode, multistandard terminals where the radio functionalities are defined by software. The first part of this research work ...

Hamila, Ridha — Tampere University of Technology

Signal Processing in Phase-Domain All-Digital Phase-Locked Loops

The implementation of wireless transceivers on a single chip in a single technology requires digital realizations of traditional analog building blocks such as phase-locked loops (PLLs). All-digital PLLs (ADPLLs) utilize the zero crossings of signals instead of their amplitudes to realize the frequency synthesizer entirely in digital CMOS technology. This thesis analyzes ADPLLs and highlights the system-level signal processing aspects. A z-domain model and a mixed-signal model are used to develop signal processing algorithms, to perform high-level simulations, and to evaluate the performance of ADPLLs. The impact of imperfections on the output phase noise spectrum are analytically described and compared to event-driven simulation outcomes. Oscillator noise, frequency quantization noise with sigma-delta noise shaping, and reference clock jitter raise the output phase noise level, whereas phase quantization and injection pulling manifest themselves as spurs in the output phase noise spectrum. Furthermore, ...

Stefan Mendel — Graz University of Technology

Efficient Interference Suppression and Resource Allocation in MIMO and DS-CDMA Wireless Networks

Direct-sequence code-divisionmultiple-access (DS-CDMA) and multiple-input multiple-output (MIMO) wireless networks form the physical layer of the current generation of mobile networks and are anticipated to play a key role in the next generation of mobile networks. The improvements in capacity, data-rates and robustness that these networks provide come at the cost of increasingly complex interference suppression and resource allocation. Consequently, efficient approaches to these tasks are essential if the current rate of progression in mobile technology is to be sustained. In this thesis, linear minimum mean-square error (MMSE) techniques for interference suppression and resource allocation in DS-CDMA and cooperative MIMO networks are considered and a set of novel and efficient algorithms proposed. Firstly, set-membership (SM) reduced-rank techniques for interference suppression in DS-CDMA systems are investigated. The principals of SM filtering are applied to the adaptation of the projection matrix and reduced-rank ...

Patrick Clarke — University of York

Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.