An Energy Aware Framework for Mobile Computing

Since their inception, energy dissipation has been a critical issue for mobile computing systems. Although a large research investment in low-energy circuit design and hardware level energy management has led to more energy-efficient architectures, even then, there is a growing realization that the contribution to energy conservation should be more rigorously considered at higher levels of the systems, such as operating systems and applications. This dissertation puts forth the claim that energy-aware compilation to improve appli- cation quality both in terms of execution time and energy consumption is essential for a high performance mobile computing embedded system design. Our work is a design paradigm shift from the logic gate being the basic silicon computation unit, to an in- struction running on an embedded processor. Multimedia DSP processors are the most lucrative choice to a mobile computing system design for their ...

Azeemi, N. Zafar — Vienna University of Technology


Distributed Memory Reduction Operations in Presence of Process Desynchronization

Despite decades of exponential growth in computational power, humans continue to find new problems that eclipse available computational resources. This unrelenting pursuit for computational power has brought about supercomputers consisting of millions of individual computing units. Writing programs that would efficiently utilize the computational power of such complex machines has turned out to be a major challenge. As of today, most \ac{HPC} applications continue to be based on the distributed memory programming paradigm, through the use of \ac{MPI}. One of the principal drivers behind the research in this dissertation was the coupling of multi-scale and multi-physics iPIC3D space weather simulation with in-situ raytraced visualization for real-time simulation steering. This application was developed by the Leuven Intel ExaScale Lab as a research prototype for the type of HPC applications projected to run on exascale machines of the 2018-2020 timeframe. Due to ...

Marendic, Petar — Vrije Universiteit Brussel


Resource Allocation in Modulation and Equalization Procedures in DSL Modems

Digital subscriber line (DSL) technology is a very popular broadband access technology. It uses the existing telephone infrastructure to provide broadband access. In order to cope with the increased bandwidth demand to support broadband services, such as, Video on Demand (VoD), real time multimedia streaming, it is important to further improve the DSL. The main performance degradation of the DSL system is caused by channel impairments, such as, crosstalk and inter-symbol interference (ISI). Furthermore, the discrete Fourier transform (DFT) based discrete multitone (DMT) system has very poor spectral properties, which prohibit the use of tones at the band edges in order to meet the power spectral density (PSD) constraints of the system, thus reducing the achievable bit rate. In order to mitigate the channel impairments as well as to combat the poor spectral properties of the DFT based DMT, sophisticated ...

Kumar Pandey, Prabin — KU Leuven


Digital design and experimental validation of high-performance real-time OFDM systems

The goal of this Ph.D. dissertation is to address a number of challenges encountered in the digital baseband design of modern and future wireless communication systems. The fast and continuous evolution of wireless communications has been driven by the ambitious goal of providing ubiquitous services that could guarantee high throughput, reliability of the communication link and satisfy the increasing demand for efficient re-utilization of the heavily populated wireless spectrum. To cope with these ever-growing performance requirements, researchers around the world have introduced sophisticated broadband physical (PHY)-layer communication schemes able to accommodate higher bandwidth, which indicatively include multiple antennas at the transmitter and receiver and are capable of delivering improved spectral efficiency by applying interference management policies. The merging of Multiple Input Multiple Output (MIMO) schemes with the Orthogonal Frequency Division Multiplexing (OFDM) offers a flexible signal processing substrate to implement ...

Font-Bach, Oriol — Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)


Design and Realization of Fractional Systems for Signal Processing Applications

The concept of fractional calculus has emerged as one of the most effective mathematical tools for improving the performance of electrical circuits and systems. By using this tool electronic filters, oscillators, integrators, differentiators, and several other signal processing circuits and systems are realized in fractional sense. Consequently, these systems are known as fractional-order systems, and they enjoy more degree of freedom. Fractional-order systems also have higher accuracy and flexibility than the conventional systems. The fractional-order systems utilize fractance devices (FDs) in place of conventional passive circuit components. Although these FDs are not available commercially as a lumped element; they can be approximated using a semi-infinite R-C/R-L tree or ladder network. These R-C/R-L networks based FDs degrade the performance of the overall system in terms of power efficiency, noise, circuit complexity, and cost, etc. In this work, an attempt has been ...

Mishra, Shalabh Kumar — University of Delhi


Distributed Demand-Side Optimization in the Smart Grid

The modern power grid is facing major challenges in the transition to a low-carbon energy sector. The growing energy demand and environmental concerns require carefully revisiting how electricity is generated, transmitted, and consumed, with an eye to the integration of renewable energy sources. The envisioned smart grid is expected to address such issues by introducing advanced information, control, and communication technologies into the energy infrastructure. In this context, demand-side management (DSM) makes the end users responsible for improving the efficiency, reliability and sustainability of the power system: this opens up unprecedented possibilities for optimizing the energy usage and cost at different levels of the network. The design of DSM techniques has been extensively discussed in the literature in the last decade, although the performance of these methods has been scarcely investigated from the analytical point of view. In this thesis, ...

Atzeni, Italo — Universitat Politècnica de Catalunya


Joint Downlink Beamforming and Discrete Resource Allocation Using Mixed-Integer Programming

Multi-antenna processing is widely adopted as one of the key enabling technologies for current and future cellular networks. Particularly, multiuser downlink beamforming (also known as space-division multiple access), in which multiple users are simultaneously served with spatial transmit beams in the same time and frequency resource, achieves high spectral efficiency with reduced energy consumption. To harvest the potential of multiuser downlink beamforming in practical systems, optimal beamformer design shall be carried out jointly with network resource allocation. Due to the specifications of cellular standards and/or implementation constraints, resource allocation in practice naturally necessitates discrete decision makings, e.g., base station (BS) association, user scheduling and admission control, adaptive modulation and coding, and codebook-based beamforming (precoding). This dissertation focuses on the joint optimization of multiuser downlink beamforming and discrete resource allocation in modern cellular networks. The problems studied in this thesis involve ...

Cheng, Yong — Technische Universität Darmstadt


Coordination Strategies for Interference Management in MIMO Dense Cellular Networks

The envisioned rapid and exponential increase of wireless data traffic demand in the next years imposes rethinking current wireless cellular networks due to the scarcity of the available spectrum. In this regard, three main drivers are considered to increase the capacity of today's most advanced (4G systems) and future (5G systems and beyond) cellular networks: i) use more bandwidth (more Hz) through spectral aggregation, ii) enhance the spectral efficiency per base station (BS) (more bits/s/Hz/BS) by using multiple antennas at BSs and users (i.e. MIMO systems), and iii) increase the density of BSs (more BSs/km2) through a dense and heterogeneous deployment (known as dense heterogeneous cellular networks). We focus on the last two drivers. First, the use of multi-antenna systems allows exploiting the spatial dimension for several purposes: improving the capacity of a conventional point-to-point wireless link, increasing the number ...

Lagen, Sandra — Universitat Politecnica de Catalunya


Signal Quantization and Approximation Algorithms for Federated Learning

Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...

A, Vijay — Indian Institute of Technology Bombay


Transmission strategies for wireless energy harvesting nodes

Over the last few decades, transistor miniaturization has enabled a tremendous increase in the processing capability of commercial electronic devices, which, combined with the reduction of production costs, has tremendously fostered the usage of the Information and Communications Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has led to a tremendous increment in the energetic demand of the ICT sector, which is expected to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas emissions as reported by the European Council. Additionally, the autonomy of battery operated devices is getting reduced year after year since battery technology has not evolved fast enough to cope with the increase of energy consumption associated to the growth of the node’s processing capability. Energy harvesting, which is known as the process of collecting energy ...

Gregori, Maria — Centre Tecnològic de Telecomunicacions de Catalunya


Heuristic Optimization Methods for System Partitioning in HW/SW Co-Design

Nowadays, the design of embedded systems is confronted with the combination of complex signal processing algorithms on the one hand and a variety of computational intensive multimedia applications on the other hand, while time to product launch has been extremely reduced. Especially in the wireless domain those challenges are stacked with tough requirements on power consumption and chip size. Unfortunately, design productivity did not undergo a similar progression and therefore fails to cope with the heterogeneity of modern hardware architectures. Until now, electronic design automation do not provide for complete coverage of the design ow. In particular crucial design tasks as high level characterisation of algorithms, oating-point to xed-point conversion, automated hardware/software partitioning, and automated virtual prototyping are not suciently supported or completely absent. In recent years a consistent design framework named Open Tool Integration Environment (OTIE) has been established ...

Knerr, Bastian — Vienna University of Technology


Adaptive media streaming over multipath networks

With the latest developments in video coding technology and fast deployment of end-user broadband internet connections, real-time media applications become increasingly interesting for both private users and businesses. However, the internet remains a best-effort service network unable to guarantee the stringent requirements of the media application, in terms of high, constant bandwidth, low packet loss rate and transmission delay. Therefore, efficient adaptation mechanisms must be derived in order to bridge the application requirements with the transport medium characteristics. Lately, different network architectures, e.g., peer-to-peer networks, content distribution networks, parallel wireless services, emerge as potential solutions for reducing the cost of communication or infrastructure, and possibly improve the application performance. In this thesis, we start from the path diversity characteristic of these architectures, in order to build a new framework, specific for media streaming in multipath networks. Within this framework we ...

Jurca, Dan — EPFL/ITS, Lausanne, Switzerland


Adaptive Communications for Next Generation Broadband Wireless Access Systems

In Broadband Wireless Access systems the efficient use of the resources is crucial from many points of views. From the operator point of view, the bandwidth is a scarce, valuable, and expensive resource which must be exploited in an efficient manner while the Quality of Service (QoS) provided to the users is guaranteed. On the other hand, a tight delay and link quality constraints are imposed on each data flow hence the user experiences the same quality as in fixed networks. During the last few years many techniques have been developed in order to increase the spectral efficiency and the throughput. Among them, the use of multiple antennas at the transmitter and the receiver (exploiting spatial multiplexing) with the joint optimization of the medium access control layer and the physical layer parameters. In this Ph.D. thesis, different adaptive techniques for ...

Ismael Gutierrez González — Universitat Ramon Llull


Stochastic Schemes for Dynamic Network Resource Allocation

Wireless networks and power distribution grids are experiencing increasing demands on their efficiency and reliability. Judicious methods for allocating scarce resources such as power and bandwidth are of paramount importance. As a result, nonlinear optimization and signal processing tools have been incorporated into the design of contemporary networks. This thesis develops schemes for efficient resource allocation (RA) in such dynamic networks, with an emphasis in stochasticity, which is accounted for in the problem formulation as well as in the algorithms and schemes to solve those problems. Stochastic optimization and decomposition techniques are investigated to develop low-complexity algorithms with specific applications in cross-layer design of wireless communications, cognitive radio (CR) networks and smart power distribution systems. The costs and constraints on the availability of network resources, together with diverse quality of service (QoS) requirements, render network design, management, and operation challenging ...

Lopez Ramos, Luis Miguel — King Juan Carlos University


Resource Management in Multicarrier Based Cognitive Radio Systems

The ever-increasing growth of the wireless application and services affirms the importance of the effective usage of the limited radio spectrum. Existing spectrum management policies have led to significant spectrum under-utilization. Recent measurements showed that large range of the spectrum is sparsely used in both temporal and spatial manner. This conflict between the inefficient usage of the spectrum and the continuous evolution in the wireless communication calls upon the development of more flexible management policies. Cognitive radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in making the best solution of this conflict by allowing a group of secondary users (SUs) to share the radio spectrum originally allocated to the primary user (PUs). The operation of CR should not negatively alter the performance of the PUs. Therefore, the interference control along with the highly ...

Musbah Shaat — Universitat Politecnica de Catalunya

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.