Efficient Decoding Techniques for LDPC Codes

Efficient decoding techniques for LDPC codes are in demand, since these codes are included in many standards nowadays. Although the theoretical performance of LDPC codes is impressive, their practical implementation leads to problems like numerical inaccuracy, limited memory resources, etc. We investigate methods that are suited to reduce the decoding complexity while still keeping the loss in performance small. We aim to reduce the complexity using three approaches: simplification of the component decoders, restricting the message passing algorithm to binary variables and combining the LDPC decoder with other receiver tasks like demapping or multi-user detection. For the simplification of the component decoders, we analyze the min-sum algorithm and derive a theoretical framework which is used to explain previous heuristic approaches to improve the performance of this algorithm. Using this framework, we are able to modify the algorithm in order to ...

Lechner, G. — Vienna University of Technology


Distributed Source Coding. Tools and Applications to Video Compression

Distributed source coding is a technique that allows to compress several correlated sources, without any cooperation between the encoders, and without rate loss provided that the decoding is joint. Motivated by this principle, distributed video coding has emerged, exploiting the correlation between the consecutive video frames, tremendously simplifying the encoder, and leaving the task of exploiting the correlation to the decoder. The first part of our contributions in this thesis presents the asymmetric coding of binary sources that are not uniform. We analyze the coding of non-uniform Bernoulli sources, and that of hidden Markov sources. For both sources, we first show that exploiting the distribution at the decoder clearly increases the decoding capabilities of a given channel code. For the binary symmetric channel modeling the correlation between the sources, we propose a tool to estimate its parameter, thanks to an ...

Toto-Zarasoa, Velotiaray — INRIA Rennes-Bretagne Atlantique, Universite de Rennes 1


Short-length Low-density Parity-check Codes: Construction and Decoding Algorithms

Error control coding is an essential part of modern communications systems. LDPC codes have been demonstrated to offer performance near the fundamental limits of channels corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too complex to be practically useful even at short block lengths and so a graph-based message passing decoder known as the belief propagation algorithm is used instead. In fact, on graphs without closed paths known as cycles the iterative message passing decoding is known to be optimal and may converge in a single iteration, although identifying the message update schedule which allows single-iteration convergence is not trivial. At finite block lengths graphs without cycles have poor minimum distance properties and perform poorly even under optimal decoding. LDPC codes with large block length have been demonstrated to offer performance close to that predicted for ...

Healy, Cornelius Thomas — University of York


Iterative Joint Source-Channel Coding Techniques for Single and Multiterminal Sources in Communication Networks

In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...

Del Ser, Javier — University of Navarra (TECNUN)


Adaptive Signal Processing for Power Line Communications

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...

Tripodi, Carlo — Università degli Studi di Parma


Design and applications of Filterbank structures implementing Reed-Solomon codes

In nowadays communication systems, error correction provides robust data transmission through imperfect (noisy) channels. Error correcting codes are a crucial component in most storage and communication systems – wired or wireless –, e.g. GSM, UMTS, xDSL, CD/DVD. At least as important as the data integrity issue is the recent realization that error correcting codes fundamentally change the trade-offs in system design. High-integrity, low redundancy coding can be applied to increase data rate, or battery life time or by reducing hardware costs, making it possible to enter mass market. When it comes to the design of error correcting codes and their properties, there are two main theories that play an important role in this work. Classical coding theory aims at finding the best code given an available block length. This thesis focuses on the ubiquitous Reed-Solomon codes, one of the major ...

Van Meerbergen, Geert — Katholieke Universiteit Leuven


Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs

Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...

Han, Sai — Technische Universität Braunschweig


Polar Coding for the Wiretap Broadcast Channel

In the next era of communications, where heterogeneous, asynchronous and ultra-low latency networks are drawn on the horizon, classical cryptography might be inadequate due to the excessive cost of maintaining a public-key infrastructure and the high computational capacity required in the devices. Moreover, it is becoming increasingly difficult to guarantee that the computational capacity of adversaries would not be able to break the cryptograms. Consequently, information-theoretic security, and particularly its application to keyless secrecy communication, might play an important role in the future development of these systems. The notion of secrecy in this case does not rely on any assumption of the computational power of eavesdroppers, and is based instead on guaranteeing statistical independence between the information message and the observed cryptogram. This is possible by constructing channel codes that exploit the noisy behavior of the channels involved in the ...

del Olmo Alòs, Jaume — Universitat Politècnica de Catalunya


Study on Subband Adaptive Array for Space-Time Codes in Wideband Channel

Recently, many works have been accomplished on transmit diversity for a high-speed data transmission through the wireless channel. A Multiple Input Multiple Output (MIMO) system which employs multiple antennas at transmitter and receiver has been shown to be able to improve transmission data rate and capacity of the system. When the channel state information (CSI) is unknown at the transmitter, an multiple input single output (MISO) system combined with the transmit diversity of space time coding modulation known as space-time block coding (STBC) has taken a great attention. However, the performance of STBC is deteriorated under frequency selective fading due to inter symbol interference (ISI). An STBC employing tapped delay line adaptive array (STBC-TDLAA) is known as a solution for this problem since it utilizes the delayed signals to enhance the desired signal instead of excluding them as interferences. However, ...

Ramli, Nordin Bin — University of Electro-Communications, Japan


Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...

Roemer, Florian — Ilmenau University of Technology


Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks

This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, long with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a ...

Ochandiano, Pello — University of Mondragon


Iterative Multi-User Receivers for CDMA Systems

Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...

Wehinger, J. — Vienna University of Technology


Multi-user Receiver Structures for Direct Sequence Code Division Multiple Access

This thesis reports on an investigation of various system architectures and receiver structures for cellular communications systems which discriminate users by direct sequence code division multiple access (DSCDMA). Attention is focussed on the downlink of such a spread spectrum system and the influence of a number of design parameters is considered. The objective of the thesis is to investigate signal processing techniques which may be employed either at the receiver, or throughout the system to improve the overall capacity. The principles of spread spectrum communication are first outlined, including a discussion of the relative merits of spreading sequence sets, and a description of various signal processing techniques which are to be applied to the multi-user environment. The measure of system performance is introduced, and the conventional DS-CDMA system is analysed theoretically and through simulation to provide a reference performance level. ...

Band, Ian W. — University Of Edinburgh


Parallelized Architectures for Low Latency Turbo Structures

In this thesis, we present low latency general concatenated code structures suitable for parallel processing. We propose parallel decodable serially con- catenated codes (PDSCCs) which is a general structure to construct many variants of serially concatenated codes. Using this most general structure we derive parallel decodable serially concatenated convolutional codes (PDSC- CCs). Convolutional product codes which are instances of PDSCCCs are studied in detail. PDSCCCs have much less decoding latency and show al- most the same performance compared to classical serially concatenated con- volutional codes. Using the same idea, we propose parallel decodable turbo codes (PDTCs) which represent a general structure to construct parallel con- catenated codes. PDTCs have much less latency compared to classical turbo codes and they both achieve similar performance. We extend the approach proposed for the construction of parallel decod- able concatenated codes to trellis coded ...

Gazi, Orhan — Middle East Technical University


Lossless and nearly lossless digital video coding

In lossless coding, compresssion and decompression of source data result in the exact recovery of the individual elements of the original source data. Lossless image / video coding is necessary in applications where no loss of pixel values is tolerable. Examples are medical imaging, remote sensing, in image/video archives and studio applications where tandem- and trans-coding are used in editing, which can lead to accumulating errors. Nearly-lossless coding is used in applications where a small error, defined as a maximum error or as a root mean square (rms) error, is tolerable. In lossless embedded coding, a losslessly coded bit stream can be decoded at any bit rate lower than the lossless bit rate. In this thesis, research on embedded lossless video coding based on a motion compensated framework, similar to that of MPEG-2, is presented. Transforms that map integers into ...

Abhayaratne, Charith — University of Bath

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.