Ziv-Zakai Bound for Target Nonlinear Parameter Estimation

Nonlinear parameter estimation for targets is one of the fundamental problem in statistical signal processing, and has attracted a lot of research interest in the past few decades, where higher estimation accuracy is one of the key objectives. Since there is no general closed-form expression on minimum mean-squared error (MSE), the lower bounds on MSE becomes the benchmark on performance evaluation for estimation algorithms. In the past half century, researches are devoted to find a lower bound with global tightness, strong physical interpretability, and ease of use in specific estimation scenarios. Therein, Ziv-Zakai bound (ZZB) has been proven as one of the globally tightest lower bounds. It establishes the intuitive relationship between the estimation error and the probability of error of a hypothesis testing problem, which provides better physical interpretability compared with other lower bounds. However, it still remains challenging ...

Zhang, Zongyu — Zhejiang University


Bayesian Algorithms for Mobile Terminal Positioning in Outdoor Wireless Environments

The ability to reliably and cheaply localize mobile terminals will allow users to understand and utilize the what, where and when of the surrounding physical world. Therefore, mobile terminal location information will open novel application opportunities in many areas. The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework in order to work under a common theoretical context. Filter derivation and implementation algorithms are provided with emphasis on ...

Khalaf-Allah, Mohamed — Leibniz University of Hannover


Antenna Array Processing: Autocalibration and Fast High-Resolution Methods for Automotive Radar

In this thesis, advanced techniques for antenna array processing are addressed. The problem of autocalibration is considered and a novel method for a two-dimensional array is developed. Moreover, practicable methods for high-resolution direction-of-arrival (DOA) estimation and detection in automotive radar are proposed. A precise model of the array response is required to maintain the performance of DOA estimation. When the sensor environment is time-varying, this can only be achieved with autocalibration. The fundamental problem of autocalibration of an unknown phase response for uniform rectangular arrays is considered. For the case with a single source, a simple and robust least squares algorithm for joint two-dimensional DOA estimation and phase calibration is developed. An identification problem is determined and a suitable constraint is proposed. Simulation results show that the performance of the proposed estimator is close to the approximate CRB for both ...

Heidenreich, Philipp — Technische Universität Darmstadt


Performance Analysis of Bistatic Radar and Optimization methodology in Multistatic Radar System

This work deals with the problem of calculating the Cramer-Rao lower bounds (CRLBs) for bistatic radar channels. To this purpose we exploited the relation between the Ambiguity Function (AF) and the CRLB. The bistatic CRLBs are analyzed and compared to the monostatic counterparts as a function of the bistatic geometric parameters. In the bistatic case both geometry factors and transmitted waveforms play an important role in the shape of the AF, and therefore in the estimation accuracy of the target range and velocity. In particular, the CRLBs depend on the target direction of arrival, the bistatic baseline length, and the distance between the target and the receiver. The CRLBs are then used to select the optimum bistatic channel (or set of channels) for the tracking of a radar target moving along a trajectory in a multistatic scenario and for design ...

Stinco, Pietro — Universita di Pisa


Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity


AOA-based Ultrasonic 3-D Location for Ubiquitous Computing

This thesis addresses the problem of simplifying indoor ultrasonic location systems through the disposal of the radio synchronization subsystem. The location approach proposed herein is completely based on angle-of arrival (AOA) estimation of ultrasonic frequency-hopping spread spectrum (FHSS) signals transmitted by fixed beacons with known positions. The proposed system is privacy-oriented, that is the device to be located only receives and does not transmit signals. In the proposed location system, the beacons transmit their IDs using ultrasonic signals. The receiver acquires these IDs and determines its room-level position by table lookup. Following beacon identification, the receiver exploits a priori knowledge of the hopping patterns associated with the beacons and a sensor array to determine the AOA of the signal from each beacon. Next, the AOA information is used to determine the receiver's 3-D location using location algorithms proposed herein. In ...

Ballal, Tarig — University College Dublin


Sparse Array Signal Processing

This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...

Huang, Huiping — Darmstadt University of Technology


Selected Topics In Direct Geolocation Of Radio Transmitters & Passive Targets

This dissertation is dedicated to the exploration of various direct positioning algorithms for radio transmitters and passive target geolocation. Contrary to the traditional ``two-step'' approach, the ``direct positioning'' approach states that the radio transmitter's position can be extracted directly from the raw samples of the radio transmitter signals collected by the system sensors, without explicitly going through an estimation of position-related parameters such as time-delay, angular or amplitude information. In this work, the concept of direct positioning is applied to various models and consistently outperforms the traditional two-step position estimators, while tightly attaining the theoretical performance bounds. In the sequel, we explore 3 models for radio transmitters and passive target geolocation. The first model discussed in chapter 3, harnesses the transmit signal diversity of MIMO Radar systems to enhance passive-target position estimation via direct estimation algorithms. The algorithms are developed ...

Bar-Shalom, Ofer — Tel-Aviv University


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Direction of Arrival Estimation and Localization Exploiting Sparse and One-Bit Sampling

Data acquisition is a necessary first step in digital signal processing applications such as radar, wireless communications and array processing. Traditionally, this process is performed by uniformly sampling signals at a frequency above the Nyquist rate and converting the resulting samples into digital numeric values through high-resolution amplitude quantization. While the traditional approach to data acquisition is straightforward and extremely well-proven, it may be either impractical or impossible in many modern applications due to the existing fundamental trade-off between sampling rate, amplitude quantization precision, implementation costs, and usage of physical resources, e.g. bandwidth and power consumption. Motivated by this fact, system designers have recently proposed exploiting sparse and few-bit quantized sampling instead of the traditional way of data acquisition in order to reduce implementation costs and usage of physical resources in such applications. However, before transition from the tradition data ...

Saeid Sedighi — University of Luxembourg


Inferring Room Geometries

Determining the geometry of an acoustic enclosure using microphone arrays has become an active area of research. Knowledge gained about the acoustic environment, such as the location of reflectors, can be advantageous for applications such as sound source localization, dereverberation and adaptive echo cancellation by assisting in tracking environment changes and helping the initialization of such algorithms. A methodology to blindly infer the geometry of an acoustic enclosure by estimating the location of reflective surfaces based on acoustic measurements using an arbitrary array geometry is developed and analyzed. The starting point of this work considers a geometric constraint, valid both in two and three-dimensions, that converts time-of-arrival and time-difference-of-arrival information into elliptical constraints about the location of reflectors. Multiple constraints are combined to yield the line or plane parameters of the reflectors by minimizing a specific cost function in the ...

Filos, Jason — Imperial College London


ULTRA WIDEBAND LOCATION IN SCENARIOS WITHOUT CLEAR LINE OF SIGHT: A PRACTICAL APPROACH

Indoor location has experienced a major boost in recent years. location based services (LBS), which until recently were restricted to outdoor scenarios and the use of GPS, have also been extended into buildings. From large public structures such as airports or hospitals to a multitude of industrial scenarios, LBS has become increasingly present in indoor scenarios. Of the various technologies that can be used to achieve this indoor location, the ones based on ultra- wideband (UWB) signals have become ones of the most demanded due primarily to their accuracy in position estimation. Additionally, the appearance in the market of more and more manufacturers and products has lowered the prices of these devices to levels that allow to think about their use for large deployments with a contained budget. By their nature, UWB signals are very resistant to the multi-path phenomenon, ...

Barral, Valentín — Universidade da Coruña


Effects of Model Misspecification and Uncertainty on the Performance of Estimators

System designers across all disciplines of technology face the need to develop machines capable of independently processing and analyzing data and predicting future data. This is the fundamental problem of interest in “estimation theory,” wherein probabilistic analyses are used to isolate relationships between variables, and in “statistical inference,” wherein those variables are used to make inferences about real-world quantities. In practice, all estimators are designed based on limited statistical generalizations about the behavior of the observed and latent variables of interest; however, these models are rarely fully representative of reality. In such cases, there exists a “model misspecification,” and the resulting estimators will produce results that differ from those of the properly specified estimators. Evaluating the performance of a given estimator may sometimes be done by direct comparison of estimator outputs to known ground truth. However, in many cases, there ...

LaMountain, Gerald — Northeastern University


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Multiple Description Coding for Path Diversity Video Streaming

In the current heterogeneous communication environments, the great variety of multimedia systems and applications combined with fast evolution of networking architectures and topologies, give rise to new research problems related to the various elements of the communication chain. This includes, the ever present problem in video communications, which results from the need for coping with transmission errors and losses. In this context, video streaming with path diversity appeared as a novel communication framework, involving different technological fields and posing several research challenges. The research work carried out in this thesis is a contribution to robust video coding and adaptation techniques in the field of Multiple Description Coding (MDC) for multipath video streaming. The thesis starts with a thorough study of MDC and its theoretical basis followed by a description of the most important practical implementation aspects currently available in literature. ...

Correia, Pedro Daniel Frazão — University of Coimbra

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.