Abstract / truncated to 115 words (read the full abstract)

In this thesis, advanced techniques for antenna array processing are addressed. The problem of autocalibration is considered and a novel method for a two-dimensional array is developed. Moreover, practicable methods for high-resolution direction-of-arrival (DOA) estimation and detection in automotive radar are proposed. A precise model of the array response is required to maintain the performance of DOA estimation. When the sensor environment is time-varying, this can only be achieved with autocalibration. The fundamental problem of autocalibration of an unknown phase response for uniform rectangular arrays is considered. For the case with a single source, a simple and robust least squares algorithm for joint two-dimensional DOA estimation and phase calibration is developed. An identification problem is ... toggle 6 keywords

advanced driver assistance systems autocalibration automotive radar direction-of-arrival (doa) maximum likelihood estimation uniform rectangular array

Information

Author
Heidenreich, Philipp
Institution
Technische Universit├Ąt Darmstadt
Supervisors
Publication Year
2012
Upload Date
Nov. 23, 2012

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.