Deep Learning of GNSS Signal Detection (2023)
Robust Signal Processing with Applications to Positioning and Imaging
This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...
Li, Haoqing — Northeastern University
A Statistical Theory for GNSS Signal Acquisition
Acquisition is the first stage of a Global Navigation Satellite System (GNSS) receiver and has the goal to determine which signals are in view and provide rough estimates of the signal parameters. The main objective of the thesis was to provide a complete and cohesive analysis of the acquisition process clarifying different aspects often neglected in the literature. The thesis provides the statistical tools required for the characterization of the acquisition process. In particular, the signal presence is determined by searching several candidates for the signal code delay and Doppler frequency which define a cell of the acquisition search space. Thus, the acquisition process is characterized by the strategy adopted for searching for the signal parameters and the way a decision metric is compute for each cell of the search space. Given this observation, the thesis introduces the concepts of ...
Daniele, Borio — Politecnico di Torino
Advanced Signal Processing Techniques for Global Navigation Satellite Systems
This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...
Fernandez-Prades, Carles — Universitat Politecnica de Catalunya
GNSS Array-based Acquisition: Theory and Implementation
This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. GNSS ranging signals are received with very low signal-to-noise ratio. Despite that the GNSS CDMA modulation offers limited protection against Radio Frequency Interferences (RFI), an interference that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service. A growing concern of this problem has appeared in recent times. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in the presence of wideband interferences. Antenna arrays receivers can benefit from spatial-domain processing, and thus mitigate the effects of interfering signals. ...
Arribas, Javier — Universitat Politecnica de Catalunya
Voice biometric system security: Design and analysis of countermeasures for replay attacks
Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...
Bhusan Chettri — Queen Mary University of London
Change Detection Techniques for GNSS Signal-Level Integrity
The provision of accurate positioning is becoming essential to our modern society. One of the main reasons is the great success and ease of use of Global Navigation Satellite Systems (GNSSs), which has led to an unprecedented amount of GNSS-based applications. In particular, the current trend shows that a new era of GNSS-based applications and services is emerging. These applications are the so-called critical applications, in which the physical safety of users may be in danger due to a miss-performance of the positioning system. These applications have very stringent requirements in terms of integrity. Integrity is a measure of reliability and trust that can be placed on the information provided by the system. Integrity algorithms were originally designed for civil aviation in the 1980s. Unfortunately, GNSS-based critical applications are often associated with terrestrial environments and original integrity algorithms usually fail. ...
Egea-Roca, Daniel — Universitat Autònoma de Barcelona
Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...
Burian, Adina — Universitat Trier
Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors
This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...
Gil-Martín, Manuel — Universidad Politécnica de Madrid
Advanced Tracking Loop Architectures for Multi-frequency GNSS Receiver
The multi-frequency Global Navigation Satellite System (GNSS) signals are designed to overcome the inherent performance limitations of single-frequency receivers. However, the processing of multiple frequency signals in a time-varying GNSS signal environment which are potentially affected by multipath, ionosphere scintillation, blockage, and interference is quite challenging, as each signal is influenced differently by channel effects according to its Radio Frequency (RF). In order to get the benefit of synchronously/coherently generated multiple frequency signals, advanced receiver signal processing techniques need to be developed. The aim of this research thesis is to extract the best performance benefits out of multifrequency GNSS signals in a time-varying GNSS signal environment. To accomplish this objective, it is necessary to analyze the multi-frequency signal characteristics and to investigate suitable signal processing algorithms in order to enable the best performance of each signal. The GNSS receiver position ...
Bolla, Padma — Tampere University of Technology, Finland and Samara University, Russia
Single-channel source separation for radio-frequency (RF) systems is a challenging problem relevant to key applications, including wireless communications, radar, and spectrum monitoring. This thesis addresses the challenge by focusing on data-driven approaches for source separation, leveraging datasets of sample realizations when source models are not explicitly provided. To this end, deep learning techniques are employed as function approximations for source separation, with models trained using available data. Two problem abstractions are studied as benchmarks for our proposed deep-learning approaches. Through a simplified problem involving Orthogonal Frequency Division Multiplexing (OFDM), we reveal the limitations of existing deep learning solutions and suggest modifications that account for the signal modality for improved performance. Further, we study the impact of time shifts on the formulation of an optimal estimator for cyclostationary Gaussian time series, serving as a performance lower bound for evaluating data-driven methods. ...
Lee, Cheng Feng Gary — Massachusetts Institute of Technology
Contributions to High Accuracy Snapshot GNSS Positioning
Snapshot positioning is the technique to determine the position of a Global Navigation Satellite System (GNSS) receiver using only a very brief interval of the received satellite signal. In recent years, this technique has received a great amount of attention thanks to its unique advantages in power efficiency, Time To First Fix (TTFF) and economic costs for deployment. However, the state of the art algorithms regarding snapshot positioning were based on code measurements only, which unavoidably limited the positioning accuracy to meter level. The present PhD research aims at achieving high-accuracy (centimetre level) snapshot positioning by properly utilizing carrier phase measurements. Two technical challenges should be tackled before such level of accuracy can be achieved, namely, satellite transmission time inaccuracy and the so-called Data Bit Ambiguity (DBA) issue. The first challenge is essentially originated from the lack of absolute timing ...
Liu, Xiao — Universitat Politecnica de Catalunya
Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning
This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...
Closas, Pau — Universitat Politecnica de Catalunya
Galileo Broadcast Ephemeris and Clock Errors, and Observed Fault Probabilities for ARAIM
The characterization of Clock and Ephemeris error of the Global Navigation Satellite Systems is a key element to validate the assumptions for the integrity analysis of GNSS Safety of Life (SoL) applications. Specifically, the performance metrics of SoL applications require the characterization of the nominal User Range Errors (UREs) as well as the knowledge of the probability of a satellite, Psat or a constellation fault, Pconst, i.e. when one or more satellites are not in the nominal mode. We will focus on Advanced Autonomous Integrity Monitoring (ARAIM). The present dissertation carries-out an end-to-end characterization and analysis of Galileo and GPS satellites for ARAIM. It involves two main targets. First, the characterization of Galileo and GPS broadcast ephemeris and clock errors, to determine the fault probabilities Psat and Pconst, and the determination on an upper bound of the nominal satellite ranging ...
Alonso Alonso, María Teresa — Universitat politecnica de Catalunya, Barcelona Tech
Bayesian data fusion for distributed learning
This dissertation explores the intersection of data fusion, federated learning, and Bayesian methods, with a focus on their applications in indoor localization, GNSS, and image processing. Data fusion involves integrating data and knowledge from multiple sources. It becomes essential when data is only available in a distributed fashion or when different sensors are used to infer a quantity of interest. Data fusion typically includes raw data fusion, feature fusion, and decision fusion. In this thesis, we will concentrate on feature fusion. Distributed data fusion involves merging sensor data from different sources to estimate an unknown process. Bayesian framework is often used because it can provide an optimal and explainable feature by preserving the full distribution of the unknown given the data, called posterior, over the estimated process at each agent. This allows for easy and recursive merging of sensor data ...
Peng Wu — Northeastern University
Spoofing and Disguise Variations in Face Recognition
Human recognition has become an important topic as the need and investments for security applications grow continuously. Biometrics enable reliable and efficient identity management systems by using physical and behavioral characteristics of the subjects that are permanent, universal and easy to access. This is why, the topic of biometrics attracts higher attention today. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. It allows identification at relatively high distances for unaware subjects that do not have to cooperate. In this dissertation, two challenges in face recognition are analyzed. The first one is face spoofing. Initially, spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. The second challenge explored in this thesis ...
Kose, Neslihan — EURECOM
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.