Cognitive-driven speech enhancement using EEG-based auditory attention decoding for hearing aid applications

Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Although several speech enhancement algorithms are available to reduce background noise or to perform source separation in multi-speaker scenarios, their performance depends on correctly identifying the target speaker to be enhanced. Recent advances in electroencephalography (EEG) have shown that it is possible to identify the target speaker which the listener is attending to using single-trial EEG-based auditory attention decoding (AAD) methods. However, in realistic acoustic environments the AAD performance is influenced by undesired disturbances such as interfering speakers, noise and reverberation. In addition, it is important for real-world hearing aid applications to close the AAD loop by presenting on-line auditory feedback. This thesis deals with the problem of identifying and enhancing the target speaker in realistic acoustic environments based on decoding the auditory attention ...

Aroudi, Ali — University of Oldenburg, Germany

Miniaturization effects and node placement for neural decoding in EEG sensor networks

Electroencephalography (EEG) is a non-invasive neurorecording technique, which has the potential to be used for 24/7 neuromonitoring in daily life, e.g., in the context of neural prostheses, brain-computer interfaces, or for improved diagnosis of brain disorders. Although existing mobile wireless EEG headsets are a useful tool for short-term experiments, they are still too heavy, bulky and obtrusive, for long-term EEG-monitoring in daily life. However, we are now witnessing a wave of new miniature EEG sensor devices containing small electrodes embedded in them, which we refer to as Mini-EEGs. Mini-EEGs ideally consist of a wireless node with a small scalp area footprint, in which the electrodes, amplifier and wireless radio are embedded. However, due to their miniaturization, these mini-EEGs have the drawback that only a few EEG channels can be recorded within a small area. The latter also implies that the ...

Mundanad Narayanan, Abhijith — KU Leuven

Blind Signal Separation

The separation of independent sources from mixed observed data is a fundamental and challenging signal processing problem. In many practical situations, one or more desired signals need to be recovered from the mixtures only. A typical example is speech recordings made in an acoustic environment in the presence of background noise and/or competing speakers. Other examples include EEG signals, passive sonar applications and cross-talk in data communications. The audio signal separation problem is sometimes referred to as The Cocktail Party Problem. When several people in the same room are conversing at the same time, it is remarkable that a person is able to choose to concentrate on one of the speakers and listen to his or her speech flow unimpeded. This ability, usually referred to as the binaural cocktail party effect, results in part from binaural (two-eared) hearing. In contrast, ...

Chan, Dominic C. B. — University of Cambridge

Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University

Automated detection of epileptic seizures in pediatric patients based on accelerometry and surface electromyography

Epilepsy is one of the most common neurological diseases that manifests in repetitive epileptic seizures as a result of an abnormal, synchronous activity of a large group of neurons. Depending on the affected brain regions, seizures produce various severe clinical symptoms. There is no cure for epilepsy and sometimes even medication and other therapies, like surgery, vagus nerve stimulation or ketogenic diet, do not control the number of seizures. In that case, long-term (home) monitoring and automatic seizure detection would enable the tracking of the evolution of the disease and improve objective insight in any responses to medical interventions or changes in medical treatment. Especially during the night, supervision is reduced; hence a large number of seizures is missed. In addition, an alarm should be integrated into the automated seizure detection algorithm for severe seizures in order to help the ...

Milošević, Milica — KU Leuven

Design and Evaluation of Feedback Control Algorithms for Implantable Hearing Devices

Using a hearing device is one of the most successful approaches to partially restore the degraded functionality of an impaired auditory system. However, due to the complex structure of the human auditory system, hearing impairment can manifest itself in different ways and, therefore, its compensation can be achieved through different classes of hearing devices. Although the majority of hearing devices consists of conventional hearing aids (HAs), several other classes of hearing devices have been developed. For instance, bone-conduction devices (BCDs) and cochlear implants (CIs) have successfully been used for more than thirty years. More recently, other classes of implantable devices have been developed such as middle ear implants (MEIs), implantable BCDs, and direct acoustic cochlear implants (DACIs). Most of these different classes of hearing devices rely on a sound processor running different algorithms able to compensate for the hearing impairment. ...

Bernardi, Giuliano — KU Leuven

New approaches for EEG signal processing: Artifact EOG removal by ICA-RLS scheme and Tracks extraction method

Localizing the bioelectric phenomena originating from the cerebral cortex and evoked by auditory and somatosensory stimuli are clear objectives to both understand how the brain works and to recognize different pathologies. Diseases such as Parkinson's, Alzheimer's, schizophrenia and epilepsy are intensively studied to find a cure or accurate diagnosis. Epilepsy is considered the disease with major prevalence within disorders with neurological origin. The recurrent and sudden incidence of seizures can lead to dangerous and possibly life-threatening situations. Since disturbance of consciousness and sudden loss of motor control often occur without any warning, the ability to predict epileptic seizures would reduce patients' anxiety, thus considerably improving quality of life and safety. The common procedure for epilepsy seizure detection is based on brain activity monitorization via electroencephalogram (EEG) data. This process consumes a lot of time, especially in the case of long ...

Carlos Guerrero-Mosquera — University Carlos III of Madrid

Improving Auditory Steady-State Response Detection Using Multichannel EEG Signal Processing

The ability to hear and process sounds is crucial. For adults, the inevitable ongoing aging process reduces the quality of the speech and sounds one perceives. If this effect is allowed to evolve too far, social isolation may occur. For infants, a disability in processing sounds results in an inappropriate development of speech, language, and cognitive abilities. To reduce the handicap of hearing loss in children, it is important to detect the hearing loss early and to provide effective rehabilitation. As a result, hearing of all newborns needs to be screened. If the outcome of the screening does not indicate normal hearing, more detailed hearing assessment is required. However, standard behavioral testing is not possible, so that assessment has to rely on objective physiological techniques that are not influenced by sleep or sedation. The last few decades, the use of ...

Van Dun, Bram — KU Leuven

Some Contributions to Music Signal Processing and to Mono-Microphone Blind Audio Source Separation

For humans, the sound is valuable mostly for its meaning. The voice is spoken language, music, artistic intent. Its physiological functioning is highly developed, as well as our understanding of the underlying process. It is a challenge to replicate this analysis using a computer: in many aspects, its capabilities do not match those of human beings when it comes to speech or instruments music recognition from the sound, to name a few. In this thesis, two problems are investigated: the source separation and the musical processing. The first part investigates the source separation using only one Microphone. The problem of sources separation arises when several audio sources are present at the same moment, mixed together and acquired by some sensors (one in our case). In this kind of situation it is natural for a human to separate and to recognize ...

Schutz, Antony — Eurecome/Mobile

Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova

Robust feedback cancellation algorithms for single- and multi-microphone hearing aids

When providing the necessary amplification in hearing aids, the risk of acoustic feedback is increased due to the coupling between the hearing aid loudspeaker and the hearing aid microphone(s). This acoustic feedback is often perceived as an annoying whistling or howling. Thus, to reduce the occurrence of acoustic feedback, robust and fast-acting feedback suppression algorithms are required. The main objective of this thesis is to develop and evaluate algorithms for robust and fast-acting feedback suppression in hearing aids. Specifically, we focus on enhancing the performance of adaptive filtering algorithms that estimate the feedback component in the hearing aid microphone by reducing the number of required adaptive filter coefficients and by improving the trade-off between fast convergence and good steady-state performance. Additionally, we develop fixed spatial filter design methods that can be applied in a multi-microphone earpiece.

Schepker, Henning — University of Oldenburg

A multimicrophone approach to speech processing in a smart-room environment

Recent advances in computer technology and speech and language processing have made possible that some new ways of person-machine communication and computer assistance to human activities start to appear feasible. Concretely, the interest on the development of new challenging applications in indoor environments equipped with multiple multimodal sensors, also known as smart-rooms, has considerably grown. In general, it is well-known that the quality of speech signals captured by microphones that can be located several meters away from the speakers is severely distorted by acoustic noise and room reverberation. In the context of the development of hands-free speech applications in smart-room environments, the use of obtrusive sensors like close-talking microphones is usually not allowed, and consequently, speech technologies must operate on the basis of distant-talking recordings. In such conditions, speech technologies that usually perform reasonably well in free of noise and ...

Abad, Alberto — Universitat Politecnica de Catalunya

Unsupervised Models for White Matter Fiber-Bundles Analysis in Multiple Sclerosis

Diffusion Magnetic Resonance Imaging (dMRI) is a meaningful technique for white matter (WM) fiber-tracking and microstructural characterization of axonal/neuronal integrity and connectivity. By measuring water molecules motion in the three directions of space, numerous parametric maps can be reconstructed. Among these, fractional anisotropy (FA), mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have extensively been used to investigate brain diseases. Overall, these findings demonstrated that WM and grey matter (GM) tissues are subjected to numerous microstructural alterations in multiple sclerosis (MS). However, it remains unclear whether these tissue alterations result from global processes, such as inflammatory cascades and/or neurodegenerative mechanisms, or local inflammatory and/or demyelinating lesions. Furthermore, these pathological events may occur along afferent or afferent WM fiber pathways, leading to antero- or retrograde degeneration. Thus, for a better understanding of MS pathological processes like its spatial and ...

Stamile, Claudio — Université Claude Bernard Lyon 1, KU Leuven

Adaptive Noise Cancelation in Speech Signals

Today, adaptive algorithms represent one of the most frequently used computational tools for the processing of digital speech signals. This work investigates and analyzes the properties of adaptive algorithms in speech communication applications where rigorous conditions apply, such as noise and echo cancelation. Like other theses in this field do, it tries to tackle the ever-lasting problem of computational complexity vs. rate of convergence. It introduces some new adaptive methods that stem from the existing algorithms as well as a novel concept which has been entitled Optimal Step-Size (OSS). In the first part of the thesis we investigate some well-known, widely used adaptive techniques such as the Normalized Least Mean Squares (NLMS) and the Recursive Least Mean Squares (RLS). In spite of the fact that the NLMS and the RLS belong to the "simplest" principles, as far as complexity is ...

Malenovsky, Vladimir — Department of Telecommunications, Brno University of Technology, Czech Republic

Making music through real-time voice timbre analysis: machine learning and timbral control

People can achieve rich musical expression through vocal sound -- see for example human beatboxing, which achieves a wide timbral variety through a range of extended techniques. Yet the vocal modality is under-exploited as a controller for music systems. If we can analyse a vocal performance suitably in real time, then this information could be used to create voice-based interfaces with the potential for intuitive and fulfilling levels of expressive control. Conversely, many modern techniques for music synthesis do not imply any particular interface. Should a given parameter be controlled via a MIDI keyboard, or a slider/fader, or a rotary dial? Automatic vocal analysis could provide a fruitful basis for expressive interfaces to such electronic musical instruments. The principal questions in applying vocal-based control are how to extract musically meaningful information from the voice signal in real time, and how ...

Stowell, Dan — Queen Mary University of London

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.