Stability of Coupled Adaptive Filters (2016)
Efficient Interference Suppression and Resource Allocation in MIMO and DS-CDMA Wireless Networks
Direct-sequence code-divisionmultiple-access (DS-CDMA) and multiple-input multiple-output (MIMO) wireless networks form the physical layer of the current generation of mobile networks and are anticipated to play a key role in the next generation of mobile networks. The improvements in capacity, data-rates and robustness that these networks provide come at the cost of increasingly complex interference suppression and resource allocation. Consequently, efficient approaches to these tasks are essential if the current rate of progression in mobile technology is to be sustained. In this thesis, linear minimum mean-square error (MMSE) techniques for interference suppression and resource allocation in DS-CDMA and cooperative MIMO networks are considered and a set of novel and efficient algorithms proposed. Firstly, set-membership (SM) reduced-rank techniques for interference suppression in DS-CDMA systems are investigated. The principals of SM filtering are applied to the adaptation of the projection matrix and reduced-rank ...
Patrick Clarke — University of York
Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences
This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...
Pham, Tuan Q. — Delft University of Technology
On Ways to Improve Adaptive Filter Performance
Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...
Sankaran, Sundar G. — Virginia Tech
Adaptive interference suppression algorithms for DS-UWB systems
In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...
Sheng Li — University of York
Network-Based Ionospheric Gradient Monitoring to Support Ground Based Augmentation Systems
The Ground Based Augmentation System (GBAS) is a local-area, airport-based augmentation of Global Navigation Satellite Systems (GNSS) that provides precision approach guidance for aircraft. It enhances GNSS performance in terms of integrity, continuity, accuracy, and availability by providing differential corrections and integrity information to aircraft users. Differential corrections enable the aircraft to correct spatially correlated errors, improving its position estimation. Integrity parameters enable it to bound the residual position errors, ensuring safety of the operation. Additionally, a GBAS ground station continuously monitors and excludes the satellites affected by any system failure to guarantee system integrity and safety. Among the error sources of GNSS positioning, the ionosphere is the largest and most unpredictable. Under abnormal ionospheric conditions, large ionospheric gradients may produce a significant difference between the ionospheric delay observed by the GBAS reference station and the aircraft on approach. Such ...
Caamaño Albuerne, María — Universitat Politècnica de Catalunya
Adaptive Signal Processing for Power Line Communications
This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...
Tripodi, Carlo — Università degli Studi di Parma
Broadband adaptive beamforming with low complexity and frequency invariant response
This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation. A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save ...
Koh, Choo Leng — University of Southampton
Adaptive Noise Cancelation in Speech Signals
Today, adaptive algorithms represent one of the most frequently used computational tools for the processing of digital speech signals. This work investigates and analyzes the properties of adaptive algorithms in speech communication applications where rigorous conditions apply, such as noise and echo cancelation. Like other theses in this field do, it tries to tackle the ever-lasting problem of computational complexity vs. rate of convergence. It introduces some new adaptive methods that stem from the existing algorithms as well as a novel concept which has been entitled Optimal Step-Size (OSS). In the first part of the thesis we investigate some well-known, widely used adaptive techniques such as the Normalized Least Mean Squares (NLMS) and the Recursive Least Mean Squares (RLS). In spite of the fact that the NLMS and the RLS belong to the "simplest" principles, as far as complexity is ...
Malenovsky, Vladimir — Department of Telecommunications, Brno University of Technology, Czech Republic
Best Signal Selection with Automatic Delay Compensation in VoIP Environment
In the last decades, air traffic spread more and more in the world, connecting more and more places. At the same time, the need to manage all the flights correctly and securely increased. Air traffic authorities imposed and updated several standards for the air traffic management (ATM) system, keeping in pace with the growing traffic flow. To achieve this, special voice communication systems (VCS) were developed. They ensure the communication between the pilots and the operators from the ground control centers. When a communication is initiated between the aircraft’s pilot and the ground air traffic control operator, various systems are used. The pilot speaks through the aircraft’s radio station and the signal is received by several ground radio stations. Then, the signal from each ground radio station arrives on different paths to the control center. Here one of the received ...
Marinescu, Radu-Sebastian — University Politehnica of Bucharest
Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...
Gil-Cacho, Jose Manuel — KU Leuven
Near-end crosstalk cancellation in xDSL systems
In xDSL technology, high-speed data are transferred between the central office and the customers, or between two or more central offices using unshielded telephone lines. A major impairment that hinders the increase in data-rate through the twisted-pair line is near-end crosstalk (NEXT) between the adjacent twisted pairs. DSL systems with overlapping transmit and receive spectra are susceptible to NEXT which significantly increases the interference noise in the received signal and also reduces the reliability and availability of the system. One way to cancel the NEXT in the received signal is to deploy adaptive filters. However, if adaptive filters are deployed to cancel every possible NEXT signal from the other twisted pairs, the computational complexity increases in proportion to N^2 where N is the number of twisted pairs in the bundle and, therefore, it becomes prohibitive even for small values of ...
Nongpiur, Rajeev — University of Victoria, Canada
Adaptive Digital Predistortion of Nonlinear Systems
Compensating or reducing the nonlinear distortion - usually resulting from a nonlinear system - is becoming an essential requirement in many areas. In this thesis adaptive digital predistortion techniques for a wide class of nonlinear systems are presented. For estimating the coefficients of the predistorter, different learning architectures are considered: the Direct Learning Architecture (DLA) and Indirect Learning Architecture (ILA). In the DLA approach, we propose a new adaptation algorithm - the Nonlinear Filtered-x Prediction Error Method (NFxPEM) algorithm, which has much faster convergence and much better performance compared to the conventional Nonlinear Filtered-x Least Mean Squares (NFxLMS) algorithm. All of these time domain adaptive algorithms require accurate system identification of the nonlinear system. In order to relax or avoid this strict requirement, the NFxLMS with Initial Subsystem Estimates (NFxLMS-ISE) and NFxPEM-ISE algorithms are proposed. Furthermore, we propose a frequency ...
Gan, Li — Graz University of Technology
Array Signal Processing Algorithms for Beamforming and Direction Finding
Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...
Lei Wang — University of York
This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...
Bogdanovic, Nikola — University of Patras
Fitting maximum-entropy models on large sample spaces
This thesis investigates the iterative application of Monte Carlo methods to the problem of parameter estimation for models of maximum entropy, minimum divergence, and maximum likelihood among the class of exponential-family densities. It describes a suite of tools for applying such models to large domains in which exact computation is not practically possible. The first result is a derivation of estimators for the Lagrange dual of the entropy and its gradient using importance sampling from a measure on the same probability space or its image under the transformation induced by the canonical sufficient statistic. This yields two benefits. One is the flexibility to choose an auxiliary distribution for sampling that reduces the standard error of the estimates for a given sample size. The other is the opportunity to re-weight a fixed sample iteratively to reduce the computational burden for each ...
Schofield, Edward — Imperial College London
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.