Broadband angle of arrival estimation using polynomial matrix decompositions (2016)
Algorithmic Enhancements to Polynomial Matrix Factorisations
In broadband array processing applications, an extension of the eigenvalue decomposition (EVD) to parahermitian Laurent polynomial matrices - named the polynomial matrix EVD (PEVD) - has proven to be a useful tool for the decomposition of space-time covariance matrices and their associated cross-spectral density matrices. Existing PEVD methods typically operate in the time domain and utilise iterative frameworks established by the second-order sequential best rotation (SBR2) or sequential matrix diagonalisation (SMD) algorithms. However, motivated by recent discoveries that establish the existence of an analytic PEVD - which is rarely recovered by SBR2 or SMD - alternative algorithms that better meet analyticity by operating in the discrete Fourier transform (DFT)-domain have received increasing attention. While offering promising results in applications including broadband MIMO and beamforming, the PEVD has seen limited deployment in hardware due to its high computational complexity. If the ...
Coutts, Fraser Kenneth — University of Strathclyde
Polynomial Matrix Eigenvalue Decomposition Techniques for Multichannel Signal Processing
Polynomial eigenvalue decomposition (PEVD) is an extension of the eigenvalue decomposition (EVD) for para-Hermitian polynomial matrices, and it has been shown to be a powerful tool for broadband extensions of narrowband signal processing problems. In the context of broadband sensor arrays, the PEVD allows the para-Hermitian matrix that results from the calculation of a space-time covariance matrix of the convolutively mixed signals to be diagonalised. Once the matrix is diagonalised, not only can the correlation between different sensor signals be removed but the signal and noise subspaces can also be identified. This process is referred to as broadband subspace decomposition, and it plays a very important role in many areas that require signal separation techniques for multichannel convolutive mixtures, such as speech recognition, radar clutter suppression, underwater acoustics, etc. The multiple shift second order sequential best rotation (MS-SBR2) algorithm, built ...
Wang, Zeliang — Cardiff University
Advanced Algorithms for Polynomial Matrix Eigenvalue Decomposition
Matrix factorisations such as the eigen- (EVD) or singular value decomposition (SVD) offer optimality in often various senses to many narrowband signal processing algorithms. For broadband problems, where quantities such as MIMO transfer functions or cross spectral density matrices are conveniently described by polynomial matrices, such narrowband factorisations are suboptimal at best. To extend the utility of EVD and SVD to the broadband case, polynomial matrix factorisations have gained momen- tum over the past decade, and a number of iterative algorithms for particularly the polynomial matrix EVD (PEVD) have emerged. Existing iterative PEVD algorithms produce factorisations that are computationally costly (i) to calculate and (ii) to apply. For the former, iterative algorithms at every step eliminate off-diagonal energy, but this can be a slow process. For the latter, the polynomial order of the resulting factors, directly impacting on the implementa- ...
Corr, Jamie — University of Strathclyde
MVDR Broadband Beamforming Using Polynomial Matrix Techniques
This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC ...
Alzin, Ahmed — University of Strathclyde
Polynomial Matrix Decompositions and Paraunitary Filter Banks
There are an increasing number of problems that can be solved using paraunitary filter banks. The design of optimal orthonormal filter banks for the efficient coding of signals has received considerable interest over the years. In contrast, very little attention has been given to the problem of constructing paraunitary matrices for the purpose of broadband signal subspace estimation. This thesis begins by relating these two areas of research. A frequency-domain method of diagonalising parahermitian polynomial matrices is proposed and shown to have fundamental limitations. Then the thesis focuses on the development of a novel time-domain technique that extends the eigenvalue decomposition to polynomial matrices, referred to as the second order sequential best rotation (SBR2) algorithm. This technique imposes strong decorrelation on its input signals by applying a sequence of elementary paraunitary matrices which constitutes a generalisation of the classical Jacobi ...
Redif, Soydan — University of Southampton
Algorithms and Techniques for Polynomial Matrix Decompositions
The concept of polynomial matrices is introduced and the potential application of polynomial matrix decompositions is discussed within the general context of multi-channel digital signal processing. A recently developed technique, known as the second order sequential rotation algorithm (SBR2), for performing the eigenvalue decomposition of a para-Hermitian polynomial matrix (PEVD) is presented. The potential benefit of using the SBR2 algorithm to impose strong decorrelation on the signals received by a broadband sensor array is demonstrated by means of a suitable numerical simulation. This demonstrates how the polynomial matrices produced as a result of the PEVD can be of unnecessarily high order. This is undesirable for many practical applications and slows down the iterative computational procedure. An effective truncation technique for controlling the growth in order of these polynomial matrices is proposed. Depending on the choice of truncation parameters, it provides ...
Foster, Joanne — Cardiff University
Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers
This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...
Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya
Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath
In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...
Elbir, Ahmet M. — Middle East Technical Univresity
Matrices, as natural representation of linear mappings in finite dimension, play a crucial role in signal processing and machine learning. Multiplying a vector by a full rank matrix a priori costs of the order of the number of non-zero entries in the matrix, in terms of arithmetic operations. However, matrices exist that can be applied much faster, this property being crucial to the success of certain linear transformations, such as the Fourier transform or the wavelet transform. What is the property that allows these matrices to be applied rapidly ? Is it easy to verify ? Can weapproximate matrices with ones having this property ? Can we estimate matrices having this property ? This thesis investigates these questions, exploring applications such as learning dictionaries with efficient implementations, accelerating the resolution of inverse problems or Fast Fourier Transform on graphs.
Le Magoarou, Luc — INRIA, Technicolor
Generalized Consistent Estimation in Arbitrarily High Dimensional Signal Processing
The theory of statistical signal processing finds a wide variety of applications in the fields of data communications, such as in channel estimation, equalization and symbol detection, and sensor array processing, as in beamforming, and radar systems. Indeed, a large number of these applications can be interpreted in terms of a parametric estimation problem, typically approached by a linear filtering operation acting upon a set of multidimensional observations. Moreover, in many cases, the underlying structure of the observable signals is linear in the parameter to be inferred. This dissertation is devoted to the design and evaluation of statistical signal processing methods under realistic implementation conditions encountered in practice. Traditional statistical signal processing techniques intrinsically provide a good performance under the availability of a particularly high number of observations of fixed dimension. Indeed, the original optimality conditions cannot be theoretically guaranteed ...
Rubio, Francisco — Universitat Politecnica de Catalunya
Feedback Delay Networks in Artificial Reverberation and Reverberation Enhancement
In today's audio production and reproduction as well as in music performance practices it has become common practice to alter reverberation artificially through electronics or electro-acoustics. For music productions, radio plays, and movie soundtracks, the sound is often captured in small studio spaces with little to no reverberation to save real estate and to ensure a controlled environment such that the artistically intended spatial impression can be added during post-production. Spatial sound reproduction systems require flexible adjustment of artificial reverberation to the diffuse sound portion to help the reconstruction of the spatial impression. Many modern performance spaces are multi-purpose, and the reverberation needs to be adjustable to the desired performance style. Employing electro-acoustic feedback, also known as Reverberation Enhancement Systems (RESs), it is possible to extend the physical to the desired reverberation. These examples demonstrate a wide range of applications ...
Schlecht, Sebastian Jiro — Friedrich-Alexander-Universität Erlangen-Nürnberg
This thesis is concerned with three closely related problems. The first one is called Multiple-Input Multiple-Output (MIMO) Instantaneous Blind Identification, which we denote by MIBI. In this problem a number of mutually statistically independent source signals are mixed by a MIMO instantaneous mixing system and only the mixed signals are observed, i.e. both the mixing system and the original sources are unknown or ‘blind’. The goal of MIBI is to identify the MIMO system from the observed mixtures of the source signals only. The second problem is called Instantaneous Blind Signal Separation (IBSS) and deals with recovering mutually statistically independent source signals from their observed instantaneous mixtures only. The observation model and assumptions on the signals and mixing system are the same as those of MIBI. However, the main purpose of IBSS is the estimation of the source signals, whereas ...
van de Laar, Jakob — TU Eindhoven
This thesis investigates filter bank based multicarrier modulation using offset quadrature amplitude modulation (FBMC/OQAM), which is characterised by a critically sampled FBMC system that achieves full spectral efficiency in the sense of being free of redundancy. As a starting point, a performance comparison between FBMC/OQAM and oversampled (OS) FBMC systems is made in terms of per-subband fractionally spaced equalisation in order to compensate for the transmission distortions caused by dispersive channels. Simulation results show the reduced performance in equalising FBMC/OQAM compared to OS-FBMC, where the advantage for the latter stems from the use of guard bands. Alternatively, the inferior performance of FBMC/OQAM can be assigned to the inability of a per-subband equaliser to address the problem of potential intercarrier interference (ICI) in this system. The FBMC/OQAM system is analysed by representing the equivalent transmultiplexed channel including the filter banks as ...
Nagy, Amr — University of Strathclyde
Enhancement of Speech Signals - with a Focus on Voiced Speech Models
The topic of this thesis is speech enhancement with a focus on models of voiced speech. Speech is divided into two subcategories dependent on the characteristics of the signal. One part is the voiced speech, the other is the unvoiced. In this thesis, we primarily focus on the voiced speech parts and utilise the structure of the signal in relation to speech enhancement. The basis for the models is the harmonic model which is a very often used model for voiced speech because it describes periodic signals perfectly. First, we consider the problem of non-stationarity in the speech signal. The speech signal changes its characteristics continuously over time whereas most speech analysis and enhancement methods assume stationarity within 20-30 ms. We propose to change the model to allow the fundamental frequency to vary linearly over time by introducing a chirp ...
Nørholm, Sidsel Marie — Aalborg University
Contributions to signal analysis and processing using compressed sensing techniques
Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...
Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.