Generalized Noncoherent Ultra-Wideband Receivers (2014)
Signal Processing for Ultra Wideband Transceivers
In this thesis novel implementation approaches for standardized and non-standardized ultra wide-band (UWB) systems are presented. These implementation approaches include signal processing algorithms to achieve processing of UWB signals in transceiver front-ends and in digital back-ends. A parallelization of the transceiver in the frequency-domain has been achieved with hybrid filterbank transceivers. The standardized MB-OFDM signaling scheme allows par- allelization in the frequency domain by distributing the orthogonal multicarrier modulation onto multiple units. Furthermore, the channel’s response to wideband signals has been parallelized in the frequency domain and the effects of the parallelization have been investi- gated. Slight performance decreases are observed, where the limiting effects are truncated sidelobes and filter mismatches in analog front-ends. Measures for the performance loss have been defined. For UWB signal generation, a novel broadband signal generation approach is presented. For that purpose, multiple digital-to-analog converters ...
Krall, Christoph — Graz University of Technology
Digital compensation of front-end non-idealities in broadband communication systems
The wireless communication industry has seen a tremendous growth in the last few decades. The ever increasing demand to stay connected at home, work, and on the move, with voice and data applications, has continued the need for more sophisticated end-user devices. A typical smart communication device these days consists of a radio system that can access a mixture of mobile cellular services (GSM, UMTS, etc), indoor wireless broadband services (WLAN-802.11b/g/n), short range and low energy personal communications (Bluetooth), positioning and navigation systems (GPS), etc. A smart device capable of meeting all these requirements has to be highly flexible and should be able to reconfigure radio transmitters and receivers as and when required. Further, the radio modules used in these devices should be extremely small so that the device itself is portable. In addition, the device should also be economical ...
Tandur, Deepaknath — Katholieke Universiteit Leuven
Ultra-wideband (UWB) communication systems use radio signals with a bandwidth in the range of some hundred MHz to several GHz. Radio channels with dense multipath propagation achieve high multipath diversity, which can be used to improve the robustness and capacity of the communication channel. Furthermore the large bandwidth allows to transmit signals with a small power spectral density such that the interference to other radio signals will be negligible, even if they lie within the same frequency band. In this work the focus is on low-complexity receiver architectures for communication systems in presence of multiple-access interference (MAI). The main objective of this thesis is to develop and to study a framework for communications for transmitted reference (TR) UWB systems and energy detection UWB systems. First, we study the hybrid matched-filter (HMF) receiver for TR UWB systems, which employs matched filters ...
Jimmy Baringbing — Graz University of Technology
Transmission over Time- and Frequency-Selective Mobile Wireless Channels
The wireless communication industry has experienced rapid growth in recent years, and digital cellular systems are currently designed to provide high data rates at high terminal speeds. High data rates give rise to intersymbol interference (ISI) due to so-called multipath fading. Such an ISI channel is called frequency selective. On the other hand, due to terminal mobility and/or receiver frequency offset the received signal is subject to frequency shifts (Doppler shifts). Doppler shift induces time-selectivity characteristics. The Doppler effect in conjunction with ISI gives rise to a so-called doubly selective channel (frequency- and time-selective). In addition to the channel effects, the analog front-end may suffer from an imbalance between the I and Q branch amplitudes and phases as well as from carrier frequency offset. These analog front-end imperfections then result in an additional and significant degradation in system performance, especially ...
Barhumi, Imad — Katholieke Universiteit Leuven
Ultra Wideband Communications: from Analog to Digital
The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by ...
Song, Nuan — Ilmenau University of Technology
Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems
To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple ...
Kiayani, Adnan — Tampere University of Technology
Achievable Rates and Transceiver Design in Ultra-Wideband Communications
In a multipath dominated environment, ultra-wideband (UWB) systems that transmit trains of subnanosecond duration pulses exhibit the desirable property of fine resolution in time of the received paths, which as a result of the impulsive form of the transmitted signal go through fewer amplitude fluctuations than those emanating from systems with narrower bandwidths. Being distributed over a large number of resolvable paths, UWB signal energy is typically collected by the rake receiver. In this thesis, achievable information rates of time-hopping M-ary pulse position modulation UWB systems using either soft- or hard-decision outputs are calculated first, where one distinguishing characteristic observed for the hard-output systems is that increasing the constellation size is advantageous only at sufficiently large values of the code rate. Next, it is shown that with time division duplex UWB systems, for which channel information is available at the ...
Guney, Nazli — Bogazici University
ULTRA WIDEBAND LOCATION IN SCENARIOS WITHOUT CLEAR LINE OF SIGHT: A PRACTICAL APPROACH
Indoor location has experienced a major boost in recent years. location based services (LBS), which until recently were restricted to outdoor scenarios and the use of GPS, have also been extended into buildings. From large public structures such as airports or hospitals to a multitude of industrial scenarios, LBS has become increasingly present in indoor scenarios. Of the various technologies that can be used to achieve this indoor location, the ones based on ultra- wideband (UWB) signals have become ones of the most demanded due primarily to their accuracy in position estimation. Additionally, the appearance in the market of more and more manufacturers and products has lowered the prices of these devices to levels that allow to think about their use for large deployments with a contained budget. By their nature, UWB signals are very resistant to the multi-path phenomenon, ...
Barral, Valentín — Universidade da Coruña
Deep Learning-based Speaker Verification In Real Conditions
Smart applications like speaker verification have become essential in verifying the user's identity for availing of personal assistants or online banking services based on the user's voice characteristics. However, far-field or distant speaker verification is constantly affected by surrounding noises which can severely distort the speech signal. Moreover, speech signals propagating in long-range get reflected by various objects in the surrounding area, which creates reverberation and further degrades the signal quality. This PhD thesis explores deep learning-based multichannel speech enhancement techniques to improve the performance of speaker verification systems in real conditions. Multichannel speech enhancement aims to enhance distorted speech using multiple microphones. It has become crucial to many smart devices, which are flexible and convenient for speech applications. Three novel approaches are proposed to improve the robustness of speaker verification systems in noisy and reverberated conditions. Firstly, we integrate ...
Dowerah Sandipana — Universite de Lorraine, CNRS, Inria, Loria
GNSS Array-based Acquisition: Theory and Implementation
This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. GNSS ranging signals are received with very low signal-to-noise ratio. Despite that the GNSS CDMA modulation offers limited protection against Radio Frequency Interferences (RFI), an interference that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service. A growing concern of this problem has appeared in recent times. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in the presence of wideband interferences. Antenna arrays receivers can benefit from spatial-domain processing, and thus mitigate the effects of interfering signals. ...
Arribas, Javier — Universitat Politecnica de Catalunya
Non-linear Spatial Filtering for Multi-channel Speech Enhancement
A large part of human speech communication takes place in noisy environments and is supported by technical devices. For example, a hearing-impaired person might use a hearing aid to take part in a conversation in a busy restaurant. These devices, but also telecommunication in noisy environments or voiced-controlled assistants, make use of speech enhancement and separation algorithms that improve the quality and intelligibility of speech by separating speakers and suppressing background noise as well as other unwanted effects such as reverberation. If the devices are equipped with more than one microphone, which is very common nowadays, then multi-channel speech enhancement approaches can leverage spatial information in addition to single-channel tempo-spectral information to perform the task. Traditionally, linear spatial filters, so-called beamformers, have been employed to suppress the signal components from other than the target direction and thereby enhance the desired ...
Tesch, Kristina — Universität Hamburg
The thesis addresses the problem of space-time codebook design for communication in multiple-input multiple-output (MIMO) wireless systems. The realistic and challenging non-coherent setup (channel state information is absent at the receiver) is considered. A generalized likelihood ratio test (GLRT)-like detector is assumed at the receiver and contrary to most existing approaches, an arbitrary correlation structure is allowed for the additive Gaussian observation noise. A theoretical analysis of the probability of error is derived, for both the high and low signal-to-noise ratio (SNR) regimes. This leads to a codebook design criterion which shows that optimal codebooks correspond to optimal packings in a Cartesian product of projective spaces. The actual construction of the codebooks involves solving a high-dimensional, nonlinear, nonsmooth optimization problem which is tackled here in two phases: a convex semi-definite programming (SDP) relaxation furnishes an initial point which is then ...
Beko, Marko — IST, Lisbon
Time Domain Channel Shortening for Multicarrier Systems
Multi-Carrier (MC) modulation has various advantages that make it useful for a wide variety of digital communication systems. Actually, it has been chosen as the physical layer standard for a diversity of basic systems such as digital transmission over telephone lines, applications in broadcasting and in wireless networks. The most important advantage of the MC system is its robustness against interferences. In fact, the cyclic prefix (CP) insertion through MC symbols provides higher immunity against delay spread and interferences. Therefore, as long as channel dispersion is not longer than the CP, system performance does not degrade and the need of time-domain equalization is not usually immediate. However, highly time dispersive channel leads to a significant reduction of the transmission data rate since the received signal is corrupted by both inter-carrier and inter symbol interferences. To avoid such a performance degradation, ...
Ben Salem, Emna — Sup'Com/University of Carthage, Tunisia
Ultra low-power biomedical signal processing: an analog wavelet filter approach for pacemakers
The purpose of this thesis is to describe novel signal processing methodologies and analog integrated circuit techniques for low-power biomedical systems. Physiological signals, such as the electrocardiogram (ECG), the electroencephalogram (EEG) and the electromyogram (EMG) are mostly non-stationary. The main difficulty in dealing with biomedical signal processing is that the information of interest is often a combination of features that are well localized temporally (e.g., spikes) and others that are more diffuse (e.g., small oscillations). This requires the use of analysis methods sufficiently versatile to handle events that can be at opposite extremes in terms of their time-frequency localization. Wavelet Transform (WT) has been extensively used in biomedical signal processing, mainly due to the versatility of the wavelet tools. The WT has been shown to be a very efficient tool for local analysis of nonstationary and fast transient signals due ...
Haddad, Sandro Augusto Pavlík — Delft University of Technology
Signal processing algorithms for ultra-wideband wireless communications
Not Available
Dang, Quang Hieu — Delft University of Technology
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.