Robust Signal Processing in Distributed Sensor Networks

Statistical robustness and collaborative inference in a distributed sensor network are two challenging requirements posed on many modern signal processing applications. This dissertation aims at solving these tasks jointly by providing generic algorithms that are applicable to a wide variety of real-world problems. The first part of the thesis is concerned with sequential detection---a branch of detection theory that is focused on decision-making based on as few measurements as possible. After reviewing some fundamental concepts of statistical hypothesis testing, a general formulation of the Consensus+Innovations Sequential Probability Ratio Test for sequential binary hypothesis testing in distributed networks is derived. In a next step, multiple robust versions of the algorithm based on two different robustification paradigms are developed. The functionality of the proposed detectors is verified in simulations, and their performance is examined under different network conditions and outlier concentrations. Subsequently, ...

Leonard, Mark Ryan — Technische Universität Darmstadt


Variational Sparse Bayesian Learning: Centralized and Distributed Processing

In this thesis we investigate centralized and distributed variants of sparse Bayesian learning (SBL), an effective probabilistic regression method used in machine learning. Since inference in an SBL model is not tractable in closed form, approximations are needed. We focus on the variational Bayesian approximation, as opposed to others used in the literature, for three reasons: First, it is a flexible general framework for approximate Bayesian inference that estimates probability densities including point estimates as a special case. Second, it has guaranteed convergence properties. And third, it is a deterministic approximation concept that is even applicable for high dimensional problems where non-deterministic sampling methods may be prohibitive. We resolve some inconsistencies in the literature involved in other SBL approximation techniques with regard to a proper Bayesian treatment and the incorporation of a very desired property, namely scale invariance. More specifically, ...

Buchgraber, Thomas — Graz University of Technology


Advances in graph signal processing: Graph filtering and network identification

To the surprise of most of us, complexity in nature spawns from simplicity. No matter how simple a basic unit is, when many of them work together, the interactions among these units lead to complexity. This complexity is present in the spreading of diseases, where slightly different policies, or conditions,might lead to very different results; or in biological systems where the interactions between elements maintain the delicate balance that keep life running. Fortunately, despite their complexity, current advances in technology have allowed us to have more than just a sneak-peak at these systems. With new views on how to observe such systems and gather data, we aimto understand the complexity within. One of these new views comes from the field of graph signal processing which provides models and tools to understand and process data coming from such complex systems. With ...

Coutino, Mario — Delft University of Technology


Statistical Signal Processing for Data Fusion

In this dissertation we focus on statistical signal processing for Data Fusion, with a particular focus on wireless sensor networks. Six topics are studied: (i) Data Fusion for classification under model uncertainty; (ii) Decision Fusion over coherent MIMO channels; (iii) Performance analysis of Maximum Ratio Combining in MIMO decision fusion; (iv) Decision Fusion over non-coherent MIMO channels; (v) Decision Fusion for distributed classification of multiple targets; (vi) Data Fusion for inverse localization problems, with application to wideband passive sonar platform estimation. The first topic of this thesis addresses the problem of lack of knowledge of the prior distribution in classification problems that operate on small data sets that may make the application of Bayes' rule questionable. Uniform or arbitrary priors may provide classification answers that, even in simple examples, may end up contradicting our common sense about the problem. Entropic ...

Ciuonzo, Domenico — Second University of Naples


Direction of Arrival Estimation and Localization Exploiting Sparse and One-Bit Sampling

Data acquisition is a necessary first step in digital signal processing applications such as radar, wireless communications and array processing. Traditionally, this process is performed by uniformly sampling signals at a frequency above the Nyquist rate and converting the resulting samples into digital numeric values through high-resolution amplitude quantization. While the traditional approach to data acquisition is straightforward and extremely well-proven, it may be either impractical or impossible in many modern applications due to the existing fundamental trade-off between sampling rate, amplitude quantization precision, implementation costs, and usage of physical resources, e.g. bandwidth and power consumption. Motivated by this fact, system designers have recently proposed exploiting sparse and few-bit quantized sampling instead of the traditional way of data acquisition in order to reduce implementation costs and usage of physical resources in such applications. However, before transition from the tradition data ...

Saeid Sedighi — University of Luxembourg


Robust Game-Theoretic Algorithms for Distributed Resource Allocation in Wireless Communications

The predominant game-theoretic solutions for distributed rate-maximization algorithms in Gaussian interference channels through optimal power control require perfect channel knowledge, which is not possible in practice due to various reasons, such as estimation errors, feedback quantization and latency between channel estimation and signal transmission. This thesis therefore aims at addressing this issue through the design and analysis of robust game-theoretic algorithms for rate-maximization in Gaussian interference channels in the presence of bounded channel uncertainty. A robust rate-maximization game is formulated for the single-antenna frequency-selective Gaussian interference channel under bounded channel uncertainty. The robust-optimization equilibrium solution for this game is independent of the probability distribution of the channel uncertainty. The existence and uniqueness of the equilibrium are studied and sufficient conditions for the uniqueness of the equilibrium are provided. Distributed algorithms to compute the equilibrium solution are presented and shown to ...

Anandkumar, Amod Jai Ganesh — Loughborough University


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks

Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...

D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Traffic Characterisation and Modelling for Call Admission Control Schemes on ATM Networks

Allocating resources to variable bitrate (VBR) teletraffic sources is not a trivial task because the impact of such sources on a buffered switch is diffcult to predict. This problem has repercussions for call admission control (CAC) on asynchronous transfer mode (ATM) networks. In this thesis we report on investigations into the nature of several types of VBR teletraffic. The purpose of these investigations is to identify parameters of the traffic that may assist in the development of CAC algorithms. As such we concentrate on the correlation structure and marginal distribution: the two aspects of a teletraffic source that affect its behaviour through a buffered switch. The investigations into the correlation structure consider whether VBR video is self-similar or non-stationary. This question is signicant as the exponent of self-similarity has been identied as being useful for characterising VBR teletraffic. Although results ...

Bates, Stephen — University Of Edinburgh


Transmission Strategies for Interfering Networks with Finite Rate and Outdated Channel Feedback

The emergence of very capable mobile terminals, e.g. smartphones or tablets, has dramatically increased the demand of wireless data traffic in recent years. Current growth forecasts elucidate that wireless communication standards will not be able to afford future traffic demands, thus many research efforts have been oriented towards increasing the efficiency of wireless networks. Wireless communications introduce many issues not present in wired systems, e.g. multipath effects or interference. Some of these issues may be tackled by the use of multiple antennas, i.e. MIMO technologies. This solution allows increasing not only the reliability and robustness of the communications, i.e. the diversity gain, but also its efficiency, i.e. the multiplexing gain or degrees of freedom (DoF). The DoF describe the slope of channel capacity at very high signal-to-noise-ratio (SNR) regime. For a point-to-point (P2P) communication, assuming that the wireless channel response ...

Torrellas, Marc — Universitat Politècnica de Catalunya


On the Energy Efficiency of Cooperative Wireless Networks

The aim of this dissertation is the study of cooperative communications in wireless networks. In cooperative networks, each user transmits its own data and also aids the communication of other users. User cooperation is particularly attractive for the wireless medium, where every user listens to the transmission of other users. The main benefit of user cooperation in wireless networks is, probably, its efficacy to combat the wireless channel impairments. Path loss and shadowing effects are overcome using intermediate nodes, with better channel conditions, to retransmit the received signal to the estination. Further, the channel fading effect can be also mitigated by means of cooperative spatial diversity (the information arrives at the destination through multiple independent paths). These benefits result in an increase of the users spectral efficiency and/or savings on the overall network power resource. Besides these gains, the simple ...

Gomez-Vilardebo, Jesus — Universidad Politecnica de Madrid


OFDM Air-Interface Design for Multimedia Communications

The aim of this dissertation is the investigation of the key issues encountered in the development of wideband radio air-interfaces. Orthogonal frequency-division multiplexing (OFDM) is considered as the enabling technology for transmitting data at extremely high rates over time-dispersive radio channels. OFDM is a transmission scheme, which splits up the data stream, sending the data symbols simultaneously at a drastically reduced symbol rate over a set of parallel sub-carriers. The first part of this thesis deals with the modeling of the time-dispersive and frequency-selective radio channel, utilizing second order Gaussian stochastic processes. A novel channel measurement technique is developed, in which the RMS delay spread of the channel is estimated from the level-crossing rate of the frequency-selective channel transfer function. This method enables the empirical channel characterization utilizing simplified non-coherent measurements of the received power versus frequency. Air-interface and multiple ...

Witrisal, Klaus — Delft University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.