Multi-Sensor Integration for Indoor 3D Reconstruction

Outdoor maps and navigation information delivered by modern services and technologies like Google Maps and Garmin navigators have revolutionized the lifestyle of many people. Motivated by the desire for similar navigation systems for indoor usage from consumers, advertisers, emergency rescuers/responders, etc., many indoor environments such as shopping malls, museums, casinos, airports, transit stations, offices, and schools need to be mapped. Typically, the environment is first reconstructed by capturing many point clouds from various stations and defining their spatial relationships. Currently, there is a lack of an accurate, rigorous, and speedy method for relating point clouds in indoor, urban, satellite-denied environments. This thesis presents a novel and automatic way for fusing calibrated point clouds obtained using a terrestrial laser scanner and the Microsoft Kinect by integrating them with a low-cost inertial measurement unit. The developed system, titled the Scannect, is the ...

Chow, Jacky — University of Calgary


Point Cloud Quality Assessment

Nowadays, richer 3D visual representation formats are emerging, notably light fields and point clouds. These formats enable new applications in many usage domains, notably virtual and augmented reality, geographical information systems, immersive communications, and cultural heritage. Recently, following major improvements in 3D visual data acquisition, there is an increasing interest in point-based visual representation, which models real-world objects as a cloud of sampled points on their surfaces. Point cloud is a 3D representation model where the real visual world is represented by a set of 3D coordinates (the geometry) over the objects with some additional attributes such as color and normals. With the advances in 3D acquisition systems, it is now possible to capture a realistic point cloud to represent a visual scene with a very high resolution. These point clouds may have up to billions of points and, thus, ...

Javaheri, Alireza — Instituto Superior Técnico - University of Lisbon


Mixed structural models for 3D audio in virtual environments

In the world of Information and communications technology (ICT), strategies for innovation and development are increasingly focusing on applications that require spatial representation and real-time interaction with and within 3D-media environments. One of the major challenges that such applications have to address is user-centricity, reflecting e.g. on developing complexity-hiding services so that people can personalize their own delivery of services. In these terms, multimodal interfaces represent a key factor for enabling an inclusive use of new technologies by everyone. In order to achieve this, multimodal realistic models that describe our environment are needed, and in particular models that accurately describe the acoustics of the environment and communication through the auditory modality are required. Examples of currently active research directions and application areas include 3DTV and future internet, 3D visual-sound scene coding, transmission and reconstruction and teleconferencing systems, to name but ...

Geronazzo, Michele — University of Padova


Camera based motion estimation and recognition for human-computer interaction

Communicating with mobile devices has become an unavoidable part of our daily life. Unfortunately, the current user interface designs are mostly taken directly from desktop computers. This has resulted in devices that are sometimes hard to use. Since more processing power and new sensing technologies are already available, there is a possibility to develop systems to communicate through different modalities. This thesis proposes some novel computer vision approaches, including head tracking, object motion analysis and device ego-motion estimation, to allow efficient interaction with mobile devices. For head tracking, two new methods have been developed. The first method detects a face region and facial features by employing skin detection, morphology, and a geometrical face model. The second method, designed especially for mobile use, detects the face and eyes using local texture features. In both cases, Kalman filtering is applied to estimate ...

Hannuksela, Jari — University of Oulou


System Level Modeling and Evaluation of Heterogeneous Cellular Networks

The cumulative impact of co-channel interferers, commonly referred to as aggregate network interference, is one of the main performance limiting factors in today’s mobile cellular networks. Thus, its careful statistical description is decisive for system analysis and design. A system model for interference analysis is required to capture essential network variation effects, such as base station deployment- and signal propagation characteristics. Furthermore it should be simple and tractable so as to enable first-order insights on design fundamentals and rapid exchange of new ideas. Interference modeling has posed a challenge ever since the establishment of traditional macro cellular deployments. The recent emergence of heterogeneous network topologies complicates matters by contesting many established aspects of time-honored approaches. This thesis presents user-centric system models that enable to investigate scenarios with an asymmetric interference impact. The first approach simplifies the interference analysis in a ...

Taranetz, Martin — Technische Universität Wien


Planar 3D Scene Representations for Depth Compression

The recent invasion of stereoscopic 3D television technologies is expected to be followed by autostereoscopic and holographic technologies. Glasses-free multiple stereoscopic pair displaying capabilities of these technologies will advance the 3D experience. The prospective 3D format to create the multiple views for such displays is Multiview Video plus Depth (MVD) format based on the Depth Image Based Rendering (DIBR) techniques. The depth modality of the MVD format is an active research area whose main objective is to develop DIBR friendly efficient compression methods. As a part this research, the thesis proposes novel 3D planar-based depth representations. The planar approximation of the stereo depth images is formulated as an energy-based co-segmentation problem by a Markov Random Field model. The energy terms of this problem are designed to mimic the rate-distortion tradeoff for a depth compression application. A heuristic algorithm is developed ...

Özkalaycı, Burak Oğuz — Middle East Technical University


Signal Quantization and Approximation Algorithms for Federated Learning

Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...

A, Vijay — Indian Institute of Technology Bombay


Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks

This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, long with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a ...

Ochandiano, Pello — University of Mondragon


Non-rigid Registration-based Data-driven 3D Facial Action Unit Detection

Automated analysis of facial expressions has been an active area of study due to its potential applications not only for intelligent human-computer interfaces but also for human facial behavior research. To advance automatic expression analysis, this thesis proposes and empirically proves two hypotheses: (i) 3D face data is a better data modality than conventional 2D camera images, not only for being much less disturbed by illumination and head pose effects but also for capturing true facial surface information. (ii) It is possible to perform detailed face registration without resorting to any face modeling. This means that data-driven methods in automatic expression analysis can compensate for the confounding effects like pose and physiognomy differences, and can process facial features more effectively, without suffering the drawbacks of model-driven analysis. Our study is based upon Facial Action Coding System (FACS) as this paradigm ...

Savran, Arman — Bogazici University


Spatial Consistency of 3D Channel Models

Developing realistic channel models is one of the greatest challenges for describing wireless communications. Their quality is crucial for accurately predicting the performance of a wireless system. While on the one hand, channel models have to be accurate in describing the physical properties of wave propagation, on the other hand, they have to be as least complex as possible. With the recent emergence of antennas with a massive amount of elements as a promising technology for a further enhancement of spectral efficiency, new channel models that characterize the propagation environment in both azimuth and elevation become necessary. While standardization bodies such as 3rd Generation Partnership Project (3GPP) and International Telecommunications Unit (ITU) have introduced a 3-dimensional (3D) geometry-based stochastic channel model, a system-level modeling has been missing to serve the purpose of further analysis and evaluations. Furthermore, with such a ...

Fjolla Ademaj — TU Wien


Automatic Detection, Classification and Restoration of Defects in Historical Images

Historical photos are significant attestations of the inheritance of the past. Since Photography is an art that is more than 150 years old, more and more diffuse are the photographic archives all over the world. Nevertheless, time and bad preservation corrupts physical supports, and many important historical documents risk to be ruined and their content lost. Therefore solutions must be implemented to preserve their state and to recover damaged information. This PhD thesis proposes a general methodology, and several applicative solutions, to handle these problems, by means of digitization and digital restoration. The purpose is to create a useful tool to support non-expert users in the restoration process of damaged historical images. The content of this thesis is outlined as follows: Chapter 1 gives an overview on the problems related to management and preservation of cultural repositories, and discusses about ...

Mazzola, Giuseppe — Università degli studi di Palermo - Dipartimento di Ingegneria Informatica


New Higher-Order Active Contour Models, Shape Priors, and Multiscale Analysis - Their Application To Road Network Extraction From Very High Resolution Satelite Images

The objective of this thesis is to develop and validate robust approaches for the semi-automatic extraction of road networks in dense urban areas from very high resolution (VHR) optical satellite images. Our models are based on the recently developed higher-order active contour (HOAC) phase field framework. The problem is difficult for two main reasons: VHR images are intrinsically complex and network regions may have arbitrary topology. To tackle the complexity of the information contained in VHR images, we propose a multiresolution statistical data model and a multiresolution constrained prior model. They enable the integration of segmentation results from coarse resolution and fine resolution. Subsequently, for the particular case of road map updating, we present a specific shape prior model derived from an outdated GIS digital map. This specific prior term balances the effect of the generic prior knowledge carried by ...

Peng, Ting — Project-Team Ariana (INRIA-Sophia Antipolis, France); LIAMA (CASIA, China)


Fire Detection Algorithms Using Multimodal Signal and Image Analysis

Dynamic textures are common in natural scenes. Examples of dynamic textures in video include fire, smoke, clouds, volatile organic compound (VOC) plumes in infra-red (IR) videos, trees in the wind, sea and ocean waves, etc. Researchers extensively studied 2-D textures and related problems in the fields of image processing and computer vision. On the other hand, there is very little research on dynamic texture detection in video. In this dissertation, signal and image processing methods developed for detection of a specific set of dynamic textures are presented. Signal and image processing methods are developed for the detection of flames and smoke in open and large spaces with a range of up to $30$m to the camera in visible-range (IR) video. Smoke is semi-transparent at the early stages of fire. Edges present in image frames with smoke start loosing their sharpness ...

Toreyin, Behcet Ugur — Bilkent University


Stereoscopic depth map estimation and coding techniques for multiview video systems

The dissertation deals with the problems of stereoscopic depth estimation and coding in multiview video systems, which are vital for development of the next generation three-dimensional television. The depth estimation algorithms known from literature, along with theoretical foundations are discussed. The problem of estimation of depth maps with high quality, expressed by means of accuracy, precision and temporal consistency, has been stated. Next, original solutions have been proposed. Author has proposed a novel, theoretically founded approach to depth estimation which employs Maximum A posteriori Probability (MAP) rule for modeling of the cost function used in optimization algorithms. The proposal has been presented along with a method for estimation of parameters of such model. In order to attain that, an analysis of the noise existing in multiview video and a study of inter-view correlation of corresponding samples of pictures have been ...

Stankiewicz, Olgierd — Poznan University of Technology


Toward sparse and geometry adapted video approximations

Video signals are sequences of natural images, where images are often modeled as piecewise-smooth signals. Hence, video can be seen as a 3D piecewise-smooth signal made of piecewise-smooth regions that move through time. Based on the piecewise-smooth model and on related theoretical work on rate-distortion performance of wavelet and oracle based coding schemes, one can better analyze the appropriate coding strategies that adaptive video codecs need to implement in order to be efficient. Efficient video representations for coding purposes require the use of adaptive signal decompositions able to capture appropriately the structure and redundancy appearing in video signals. Adaptivity needs to be such that it allows for proper modeling of signals in order to represent these with the lowest possible coding cost. Video is a very structured signal with high geometric content. This includes temporal geometry (normally represented by motion ...

Divorra Escoda, Oscar — EPFL / Signal Processing Institute

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.