Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...

Zhang, Jianshu — Ilmenau University of Technology


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Explicit and implicit tensor decomposition-based algorithms and applications

Various real-life data such as time series and multi-sensor recordings can be represented by vectors and matrices, which are one-way and two-way arrays of numerical values, respectively. Valuable information can be extracted from these measured data matrices by means of matrix factorizations in a broad range of applications within signal processing, data mining, and machine learning. While matrix-based methods are powerful and well-known tools for various applications, they are limited to single-mode variations, making them ill-suited to tackle multi-way data without loss of information. Higher-order tensors are a natural extension of vectors (first order) and matrices (second order), enabling us to represent multi-way arrays of numerical values, which have become ubiquitous in signal processing and data mining applications. By leveraging the powerful utitilies offered by tensor decompositions such as compression and uniqueness properties, we can extract more information from multi-way ...

Boussé, Martijn — KU Leuven


Massive MIMO: Fundamentals and System Designs

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...

Ngo, Quoc Hien — Linköping University


Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers

This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...

Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya


Cooperative Techniques for Interference Management in Wireless Networks

In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...

Lameiro, Christian — University of Cantabria


Subspace-based exponential data fitting using linear and multilinear algebra

The exponentially damped sinusoidal (EDS) model arises in numerous signal processing applications. It is therefore of great interest to have methods able to estimate the parameters of such a model in the single-channel as well as in the multi-channel case. Because such a model naturally lends itself to subspace representation, powerful matrix approaches like HTLS in the single-channel case, HTLSstack in the multi-channel case and HTLSDstack in the decimative case have been developed to estimate the parameters of the underlying EDS model. They basically consist in stacking the signal in Hankel (single-channel) or block Hankel (multi- channel) data matrices. Then, the signal subspace is estimated by means of the singular value decomposition (SVD). The parameters of the model, namely the amplitudes, the phases, the damping factors, and the frequencies, are estimated from this subspace. Note that the sample covariance matrix ...

Papy, Jean-Michel — Katholieke Universiteit Leuven


Virtual-MIMO Systems with Compress-and-Forward Cooperation

Multiple-input multiple-output (MIMO) systems have recently emerged as one of the most significant wireless techniques, as they can greatly improve the channel capacity and link reliability of wireless communications. These benefits have encouraged extensive research on a virtual MIMO system where the transmitter has multiple antennas and each of the receivers has a single antenna. Single-antenna receivers can work together to form a virtual antenna array and reap some performance benefits of MIMO systems. The idea of receiver-side local cooperation is attractive for wireless networks since a wireless receiver may not have multiple antennas due to size and cost limitations. In this thesis we investigate a virtual-MIMO wireless system using the receiver-side cooperation with the compress-and-forward (CF) protocol. Firstly, to perform CF at the relay, we propose to use standard source coding techniques, based on the analysis of its expected ...

Jiang, Jing — University of Edinburgh


Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems

Multiple-input multiple output (MIMO) systems deploy multiple antennas at either end of a communication link and can provide significant benefits compared to traditional single antenna systems, such as increased data rates through spatial multiplexing gain, and/or improved link reliability through diversity techniques. Recently, the natural extension of utilising multiple antennas in relay networks, known as MIMO relaying, has attracted significant research attention due to the fact that the benefits of MIMO can be coupled with extended network coverage through the use of relaying devices. This thesis concentrates on the design and analysis of different aspects of MIMO relay systems communicating over frequency selective channels with the use of orthogonal frequency division multiplexing (OFDM). The first focus of this thesis is on the development of training based channel estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of channel ...

Millar, Andrew Paul — University of Strathclyde


Randomized Space-Time Block Coding for the Multiple-Relay Channel

In the last decade, cooperation among multiple terminals has been seen as one of the more promising strategies to improve transmission speed in wireless communications networks. Basically, the idea is to mimic an antenna array and apply distributed versions of well-known space-diversity techniques. In this context, the simplest cooperative scheme is the relay channel: all the terminals (relays) that overhear a point-to-point communication between a source and a destination may decide to aid the source by forwarding (relaying) its message. In a mobile system, it is common to assume that the relays do not have any information about the channel between them and the destination. Under this hypothesis, the best solution to exploit the diversity offered by multiple transmitting antennas is to use space-time coding (STC). However, classical STC's are designed for systems with a fixed and usually low number ...

Gregoratti, David — Universitat Politecnica de Catalunya (UPC)


A Unified Framework for Communications through MIMO Channels

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) CHANNELS constitute a unified way of modeling a wide range of different physical communication channels, which can then be handled with a compact and elegant vector-matrix notation. The two paradigmatic examples are wireless multi-antenna channels and wireline Digital Subscriber Line (DSL) channels. Research in antenna arrays (also known as smart antennas) dates back to the 1960s. However, the use of multiples antennas at both the transmitter and the receiver, which can be naturally modeled as a MIMO channel, has been recently shown to offer a significant potential increase in capacity. DSL has gained popularity as a broadband access technology capable of reliably delivering high data rates over telephone subscriber lines. A DSL system can be modeled as a communication through a MIMO channel by considering all the copper twisted pairs within a binder as a whole rather ...

Palomar, Daniel Perez — Technical University of Catalonia (UPC)


Compressed sensing approaches to large-scale tensor decompositions

Today’s society is characterized by an abundance of data that is generated at an unprecedented velocity. However, much of this data is immediately thrown away by compression or information extraction. In a compressed sensing (CS) setting the inherent sparsity in many datasets is exploited by avoiding the acquisition of superfluous data in the first place. We combine this technique with tensors, or multiway arrays of numerical values, which are higher-order generalizations of vectors and matrices. As the number of entries scales exponentially in the order, tensor problems are often large-scale. We show that the combination of simple, low-rank tensor decompositions with CS effectively alleviates or even breaks the so-called curse of dimensionality. After discussing the larger data fusion optimization framework for coupled and constrained tensor decompositions, we investigate three categories of CS type algorithms to deal with large-scale problems. First, ...

Vervliet, Nico — KU Leuven


Robust Game-Theoretic Algorithms for Distributed Resource Allocation in Wireless Communications

The predominant game-theoretic solutions for distributed rate-maximization algorithms in Gaussian interference channels through optimal power control require perfect channel knowledge, which is not possible in practice due to various reasons, such as estimation errors, feedback quantization and latency between channel estimation and signal transmission. This thesis therefore aims at addressing this issue through the design and analysis of robust game-theoretic algorithms for rate-maximization in Gaussian interference channels in the presence of bounded channel uncertainty. A robust rate-maximization game is formulated for the single-antenna frequency-selective Gaussian interference channel under bounded channel uncertainty. The robust-optimization equilibrium solution for this game is independent of the probability distribution of the channel uncertainty. The existence and uniqueness of the equilibrium are studied and sufficient conditions for the uniqueness of the equilibrium are provided. Distributed algorithms to compute the equilibrium solution are presented and shown to ...

Anandkumar, Amod Jai Ganesh — Loughborough University


Sensing physical fields: Inverse problems for the diffusion equation and beyond

Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected remains an open area of research. This work, therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing, it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile ...

Murray-Bruce, John — Imperial College London

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.