Distributed Video Coding for Wireless Lightweight Multimedia Applications (2012)
Exploiting Correlation Noise Modeling in Wyner-Ziv Video Coding
Wyner-Ziv (WZ) video coding is a particular case of distributed video coding, a new video coding paradigm based on the Slepian-Wolf and Wyner-Ziv theorems which mainly exploit the source correlation at the decoder and not only at the encoder as in predictive video coding. Therefore, this new coding paradigm may provide a flexible allocation of complexity between the encoder and the decoder and in-built channel error robustness, interesting features for emerging applications such as low-power video surveillance and visual sensor networks among others. Although some progress has been made in the last eight years, the rate-distortion performance of WZ video coding is still far from the maximum performance attained with predictive video coding. The WZ video coding compression efficiency depends critically on the capability to model the correlation noise between the original information at the encoder and its estimation generated ...
Brites, Catarina — Instituto Superior Tecnico (IST)
Techniques for improving the performance of distributed video coding
Distributed Video Coding (DVC) is a recently proposed paradigm in video communication, which fits well emerging applications such as wireless video surveillance, multimedia sensor networks, wireless PC cameras, and mobile cameras phones. These applications require a low complexity encoding, while possibly affording a high complexity decoding. DVC presents several advantages: First, the complexity can be distributed between the encoder and the decoder. Second, the DVC is robust to errors, since it uses a channel code. In DVC, a Side Information (SI) is estimated at the decoder, using the available decoded frames, and used for the decoding and reconstruction of other frames. In this Ph.D thesis, we propose new techniques in order to improve the quality of the SI. First, successive refinement of the SI is performed after each decoded DCT band, using a Partially Decoded WZF (PDWZF), along with the ...
Abou-Elailah, Abdalbassir — Telecom Paristech
Distributed Source Coding. Tools and Applications to Video Compression
Distributed source coding is a technique that allows to compress several correlated sources, without any cooperation between the encoders, and without rate loss provided that the decoding is joint. Motivated by this principle, distributed video coding has emerged, exploiting the correlation between the consecutive video frames, tremendously simplifying the encoder, and leaving the task of exploiting the correlation to the decoder. The first part of our contributions in this thesis presents the asymmetric coding of binary sources that are not uniform. We analyze the coding of non-uniform Bernoulli sources, and that of hidden Markov sources. For both sources, we first show that exploiting the distribution at the decoder clearly increases the decoding capabilities of a given channel code. For the binary symmetric channel modeling the correlation between the sources, we propose a tool to estimate its parameter, thanks to an ...
Toto-Zarasoa, Velotiaray — INRIA Rennes-Bretagne Atlantique, Universite de Rennes 1
In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...
Del Ser, Javier — University of Navarra (TECNUN)
Error Resilience and Concealment Techniques for High Efficiency Video Coding
This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the ...
João Filipe Monteiro Carreira — Loughborough University London
A statistical approach to motion estimation
Digital video technology has been characterized by a steady growth in the last decade. New applications like video e-mail, third generation mobile phone video communications, videoconferencing, video streaming on the web continuously push for further evolution of research in digital video coding. In order to be sent over the internet or even wireless networks, video information clearly needs compression to meet bandwidth requirements. Compression is mainly realized by exploiting the redundancy present in the data. A sequence of images contains an intrinsic, intuitive and simple idea of redundancy: two successive images are very similar. This simple concept is called temporal redundancy. The research of a proper scheme to exploit the temporal redundancy completely changes the scenario between compression of still pictures and sequence of images. It also represents the key for very high performances in image sequence coding when compared ...
Moschetti, Fulvio — Swiss Federal Institute of Technology
Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies
With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...
Frossard, Pascal — Swiss Federal Institute of Technology
Stereoscopic depth map estimation and coding techniques for multiview video systems
The dissertation deals with the problems of stereoscopic depth estimation and coding in multiview video systems, which are vital for development of the next generation three-dimensional television. The depth estimation algorithms known from literature, along with theoretical foundations are discussed. The problem of estimation of depth maps with high quality, expressed by means of accuracy, precision and temporal consistency, has been stated. Next, original solutions have been proposed. Author has proposed a novel, theoretically founded approach to depth estimation which employs Maximum A posteriori Probability (MAP) rule for modeling of the cost function used in optimization algorithms. The proposal has been presented along with a method for estimation of parameters of such model. In order to attain that, an analysis of the noise existing in multiview video and a study of inter-view correlation of corresponding samples of pictures have been ...
Stankiewicz, Olgierd — Poznan University of Technology
Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs
Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...
Han, Sai — Technische Universität Braunschweig
Error Resilient Transmission of Video Streaming over Wireless Mobile Networks,
The third generation of mobile systems brought higher data rates that allow for provisioning of multimedia services containing also video. The real-time services like video call, conferencing, and streaming are particularly challenging for mobile communication systems due to the wireless channel quality variations. The mechanism for video compression utilizes a hybrid of temporal and spatial prediction, transform coding and variable length coding. The combination of these methods provides high compression gain, but at the same time makes the encoded stream more prone to errors. In this thesis, techniques for error resilient transmission of video streaming over wireless mobile networks are investigated. Focus is given to the recent H.264/AVC standard, although the ma jority of the proposed method apply to other video coding standards, too. The first part is dedicated to exploiting the residual redundancy of the received video stream at ...
Nemethova, O. — Vienna University of Technology
Multiple Description Coding for Path Diversity Video Streaming
In the current heterogeneous communication environments, the great variety of multimedia systems and applications combined with fast evolution of networking architectures and topologies, give rise to new research problems related to the various elements of the communication chain. This includes, the ever present problem in video communications, which results from the need for coping with transmission errors and losses. In this context, video streaming with path diversity appeared as a novel communication framework, involving different technological fields and posing several research challenges. The research work carried out in this thesis is a contribution to robust video coding and adaptation techniques in the field of Multiple Description Coding (MDC) for multipath video streaming. The thesis starts with a thorough study of MDC and its theoretical basis followed by a description of the most important practical implementation aspects currently available in literature. ...
Correia, Pedro Daniel Frazão — University of Coimbra
Video Quality Estimation for Mobile Video Streaming
For the provisioning of video streaming services it is essential to provide a required level of customer satisfaction, given by the perceived video stream quality. It is therefore important to choose the compression parameters as well as the network settings so that they maximize the end-user quality. Due to video compression improvements of the newest video coding standard H.264/AVC, video streaming for low bit and frame rates is possible while preserving its perceptual quality. This is especially suitable for video applications in 3G wireless networks. Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones, Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal Mobile Telecommunications System (UMTS) streaming ...
Ries, Michal — Vienna University of Technology
Optimization of Video Streaming over 3G Networks
VIDEO streaming over cellular networks has been made possible in the last years by better performing video codecs and wireless cellular networks oriented to data transmission. The interaction between two heterogeneous worlds, the telecommunication infrastructure and the coding video software, calls for advanced optimization mechanisms. The actors involved in the optimization process are the cellular system's access network, UMTS and HSDPA, the wireless transmission channel and the fi nal user equipped with a mobile device capable of decoding video sequences. The knowledge and characterization of each of the building blocks allow the optimization of each element to the specifi c needs of the others. This doctoral thesis discusses three main contributions. In the fi rst part, the e ffects of transmission errors on video streams are analyzed. Incorrectly received video packets are usually discarded by the lower layers and not ...
Superiori, Luca — Vienna University of Technology
Distributed Compressed Representation of Correlated Image Sets
Vision sensor networks and video cameras find widespread usage in several applications that rely on effective representation of scenes or analysis of 3D information. These systems usually acquire multiple images of the same 3D scene from different viewpoints or at different time instants. Therefore, these images are generally correlated through displacement of scene objects. Efficient compression techniques have to exploit this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that requires communication between the cameras, in this thesis we concentrate on distributed representation, where the captured images are encoded independently, but decoded jointly to exploit the correlation between images. One of the most important and challenging tasks relies in estimation of the underlying correlation from the compressed correlated images for effective reconstruction or analysis in the joint decoder. This thesis focuses on developing efficient ...
Thirumalai, Vijayaraghavan — EPFL, Switzerland
Scalable Single and Multiple Description Scalar Quantization
Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...
Satti, Shahid Mahmood — Vrije Universiteit Brussel
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.