Low-Complexity Iterative Detection Algorithms for Multi-Antenna Systems (2011)
Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems
In the last decade, one of the most significant technological developments that led to the new broadband wireless generation is the communication via multiple-input multiple-output (MIMO) systems. MIMO technologies have been adopted by many wireless standards such as Long Term Evolution (LTE), Wordlwide interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN). This is mainly due to their ability to increase the maximum transmission rates, together with the achieved reliability and coverage of current wireless communications, all without the need for additional bandwidth nor transmit power. Nevertheless, the advantages provided by MIMO systems come at the expense of a substantial increase in the cost to deploy multiple antennas and also in the receiver complexity, which has a major impact on the power consumption. Therefore, the design of low-complexity receivers is an important issue which is tackled throughout this ...
Roger, Sandra — Universitat Politècnica de València (Technical University of Valencia)
Detection and Resource Allocation Algorithms for Cooperative MIMO Relay Systems
Cooperative communications and multiple-input multiple-output (MIMO) communication systems are important topics in current research that will play key roles in the future of wireless networks and standards. These techniques can provide gains in data throughput, network capacity, coverage, outage, reduced error rates and power consumption, but can have an increased cost in computational complexity and present new problems in many areas. In this thesis, the various challenges in accurately detecting and estimating data signals and allocating resources in the cooperative systems are investigated. Firstly, we propose a cross-layer design strategy that consists of a cooperative maximum likelihood (ML) detector operating in conjunction with link selection for a cooperative MIMO network. The cooperative ML detector is derived, with considerations and approximations made for the knowledge of the system information that is available to the detector. Link selection in the cooperative network ...
Hesketh, Thomas John — University of York
Advanced Interference Suppression Techniques for Spread Spectrum Systems
Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...
Yunlong Cai — University of York
Large Multiuser MIMO Detection: Algorithms and Architectures
After decades of research on multiple-input multiple-output (MIMO) technology, including paradigm shifts from point-to-point to multiuser MIMO (MU-MIMO), an ample literature exists on techniques to exploit the spatial dimension to increase link throughput and network capacity of wireless communication systems. Massive MIMO, which supports hundreds of antennas at the base station (BS), is celebrated as the key enabling technology of the upcoming fifth generation (5G) wireless communication standard. However, the use of large MIMO systems in the future is also indispensable, especially for high-speed wireless backhaul connectivity. Large MIMO systems use tens of antennas in communication terminals, and can afford a large number of antennas on both the transmitter and the receiver sides. While favorable propagation in massive MIMO ensures that reliable performance can be achieved by simple linear processing, the inherent symmetry in large MIMO renders the computational complexity ...
Sarieddeen, Hadi — American University of Beirut (AUB)
Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks
Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...
Peng, Tong — University of York
Iterative Multi-User Receivers for CDMA Systems
Mobile communication networks of the third and future generations are designed to offer high-data rate services like video-telephony and data-transfer. The current Rake receiver architecture will create a shortage in available bandwidth offered to the users. This is not due to a shortage in spectrum but results from inefficient receiver architectures. Spectral efficiency can be increased considerably through multi-user detection techniques in the receiver algorithms. The present thesis investigates iterative re- ceivers for encoded CDMA transmission in the uplink. The iterative receiver is a suboptimal receiver algorithm with manageable complexity. It consists of an inter- ference mitigating multi-user detector, a bank of single-user decoders, and a channel estimator. Instead of deciding on the transmitted symbols right after the first decod- ing, the receiver feeds back tentative decision symbols to mitigate multiple-access interference in the next iteration. Similarly, soft decision symbols ...
Wehinger, J. — Vienna University of Technology
Statistical Physics Approach to Design and Analysis of Multiuser Systems Under Channel Uncertainty
Code-division multiple-access (CDMA) systems with random spreading and channel uncertainty at the receiver are studied. Frequency selective single antenna, as well as, narrowband multiple antenna channels are considered. Rayleigh fading is assumed in all cases. General Bayesian approach is used to derive both iterative and non-iterative estimators whose performance is obtained in the large system limit via the replica method from statistical physics. The effect of spatial correlation on the performance of a multiple antenna CDMA system operating in a flat-fading channel is studied. Per-antenna spreading (PAS) with random signature sequences and spatial multiplexing is used at the transmitter. Non-iterative multiuser detectors (MUDs) using imperfect channel state information (CSI) are derived. Training symbol based channel estimators having mismatched a priori knowledge about the antenna correlation are considered. Both the channel estimator and the MUD are shown to admit a simple ...
Vehkapera, Mikko — Norwegian University of Science and Technology
Non-Linear Precoding and Equalisation for Broadband MIMO Channels
Multiple-input multiple-output (MIMO) technology promises significant capacity improvements in order to more efficiently utilise the radio frequency spectrum. To achieve its anticipated multiplexing gain as well as meet the requirements for high data rate services, proposed broadband systems are based on OFDM or similar block based techniques, which are afflicted by poor design freedom at low redundancy, and are known to suffer badly from co-channel interference (CCI) in the presence of synchronisation errors. Non-block based approaches are scarce and use mostly decision feedback equalisation (DFE) or V-BLAST approaches adopted for the broadband case, as well as Tomlinson-Harashima precoding (THP). These methods do not require a guard interval and can therefore potentially achieve a higher spectral efficiency. The drawback of these schemes is the large effort in determining the optimum detection order in both space and time, often motivating the adoption ...
Waleed Eid Al-Hanafy — University of Strathclyde
In a communication system it results undoubtedly of great interest to compress the information generated by the data sources to its most elementary representation, so that the amount of power necessary for reliable communications can be reduced. It is often the case that the redundancy shown by a wide variety of information sources can be modelled by taking into account the probabilistic dependance among consecutive source symbols rather than the probabilistic distribution of a single symbol. These sources are commonly referred to as single or multiterminal sources "with memory" being the memory, in this latter case, the existing temporal correlation among the consecutive symbol vectors generated by the multiterminal source. It is well known that, when the source has memory, the average amount of information per source symbol is given by the entropy rate, which is lower than its entropy ...
Del Ser, Javier — University of Navarra (TECNUN)
Multiple-input multiple-output (MIMO) systems will be applied in wireless communications in order to increase the performance, spectral efficiency, and reliability. Theoretically, the channel capacity of those systems grows linearly with the number of transmit and receive antennas. An important performance metric beneath capacity is the normalised mean square error (MSE) under the assumption of optimal linear reception. Clearly, both performance measures depend on the properties of the MIMO channel as well as on the considered system approach, e.g. on the type of channel state information which is available at the transmitter. It has been shown that even partial CSI at the transmitter can increase the performance. In this thesis, we analyse the performance and design optimal transmit strategies of singleand multiuser MIMO systems with respect to the statistical properties of the fading channel and under different types of CSI at ...
Jorswieck, Eduard — TU Berlin / Mobile Communications
To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, ...
Zhang, Jianshu — Ilmenau University of Technology
Transmit diversity is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. This thesis considers extended orthogonal space-time block coding (EO-STBC) with beamsteering angles, which have previously been shown to potentially achieve full diversity and array gain with four transmit and one receive antenna. The optimum setting of beamsteering angles applied in the transmitter, which has to be calculated based on channel state information (CSI) at the receiver side, must be quantised and feed back to the transmitter via a reverse feedback link. When operating in a fading scenario, channel coefficients vary smoothly with time. This smooth evolution of channel coefficients motivates the investigation of differential feedback, which can reduce the number of feedback bits, while potentially maintaining near optimum performance. The hypothesis that the smooth evolution of channel coefficients translates into ...
Hussin, Mohamed Nuri Ahmed — University of Strathclyde
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs
Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...
Han, Sai — Technische Universität Braunschweig
Detection and Decoding Algorithms of Multi-Antenna Diversity Techniques for Terrestrial DVB Systems
This PhD dissertation analyzes the behavior of multi-antenna diversity techniques in broadcasting scenarios of TDT (terrestrial digital television) systems and proposes a low-complexity detection and decoding design for their practical implementation. For that purpose, the transmission-reception chains of the European DVB-T (Digital Video Broadcasting - Terrestrial) and DVB-T2 standards have been implemented over which diversity and MIMO (multiple-input multiple-output) techniques have been assessed through Monte Carlo simulations. On one hand, the most important multi-antenna diversity techniques such as CDD (cyclic delay diversity), Alamouti code-based SFBC (space-frequency block coding) and MRC (maximum ratio combining), have been evaluated in a DVB-T system over both fixed and mobile Rayleigh and Ricean channels. With the DVB-T2 standard release, multi-antenna processing has actually been introduced in digital television systems. The distributed SFBC configuration proposed in DVB-T2 is analyzed from a performance point of view considering ...
Sobron, Iker — University of Mondragon
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.