Statistical Signal and Image Processing Techniques in Corneal Modeling (2010)
Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques
Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...
Trimeche, Mejdi — Tampere University of Technology
MVDR Broadband Beamforming Using Polynomial Matrix Techniques
This thesis addresses the formulation of and solution to broadband minimum variance distortionless response (MVDR) beamforming. Two approaches to this problem are considered, namely, generalised sidelobe canceller (GSC) and Capon beamformers. These are examined based on a novel technique which relies on polynomial matrix formulations. The new scheme is based on the second order statistics of the array sensor measurements in order to estimate a space-time covariance matrix. The beamforming problem can be formulated based on this space-time covariance matrix. Akin to the narrowband problem, where an optimum solution can be derived from the eigenvalue decomposition (EVD) of a constant covariance matrix, this utility is here extended to the broadband case. The decoupling of the space-time covariance matrix in this case is provided by means of a polynomial matrix EVD. The proposed approach is initially exploited to design a GSC ...
Alzin, Ahmed — University of Strathclyde
Polynomial Predictive Filters: Implementation and Applications
In this thesis, smoothness of sampled real-world signals is exploited through the application of polynomial predictive filters. The principal reason for employing the polynomial signal model is principally twofold: firstly, assuming that the sampling rate is adequate, all real-world signals exhibit piecewise polynomial-like behavior, and secondly, polynomial-based signal processing is computationally efficient. By definition, polynomial predictive filters provide estimates of future values of polynomial-like signals. Thus, the potential applications of this research include a vast number of different delay sensitive operations on measurements like temperature, position, velocity, or power, especially in control engineering field. The polynomial-based predictive signal processing is a well-known technique, but polynomial-predictive filters have had severe drawbacks, which have hindered their application; their white noise attenuation is generally low, or they exhibit considerable passband gain peaks, rendering them unattractive for most applications. It has been possible to ...
Tanskanen, Jarno M. A. — Helsinki University of Technology
Advanced Multi-Dimensional Signal Processing for Wireless Systems
The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...
Cheng, Yao — Ilmenau University of Technology
Robust Estimation and Model Order Selection for Signal Processing
In this thesis, advanced robust estimation methodologies for signal processing are developed and analyzed. The developed methodologies solve problems concerning multi-sensor data, robust model selection as well as robustness for dependent data. The work has been applied to solve practical signal processing problems in different areas of biomedical and array signal processing. In particular, for univariate independent data, a robust criterion is presented to select the model order with an application to corneal-height data modeling. The proposed criterion overcomes some limitations of existing robust criteria. For real-world data, it selects the radial model order of the Zernike polynomial of the corneal topography map in accordance with clinical expectations, even if the measurement conditions for the videokeratoscopy, which is the state-of-the-art method to collect corneal-height data, are poor. For multi-sensor data, robust model order selection selection criteria are proposed and applied ...
Muma, Michael — Technische Universität Darmstadt
On Ways to Improve Adaptive Filter Performance
Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...
Sankaran, Sundar G. — Virginia Tech
Film and Video Restoration using Rank-Order Models
This thesis introduces the rank-order model and investigates its use in several image restoration problems. More commonly used as filters, the rank-order operators are here employed as predictors. A Laplacian excitation sequence is chosen to complete the model. Images are generated with the model and compared with those formed with an AR model. A multidimensional rankorder model is formed from vector medians for use with multidimensional image data. The first application using the rank-order model is an impulsive noise detector. This exploits the notion of ‘multimodality’ in the histogram of a difference image of the degraded image and a rank-order filtered version. It uses the EM algorithm and a mixture model to automatically determine thresholds for detecting the impulsive noise. This method compares well with other detection methods, which require manual setting of thresholds, and to stack filtering, which requires ...
Armstrong, Steven — University of Cambridge
Adaptive interference suppression algorithms for DS-UWB systems
In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...
Sheng Li — University of York
Advanced Algorithms for Polynomial Matrix Eigenvalue Decomposition
Matrix factorisations such as the eigen- (EVD) or singular value decomposition (SVD) offer optimality in often various senses to many narrowband signal processing algorithms. For broadband problems, where quantities such as MIMO transfer functions or cross spectral density matrices are conveniently described by polynomial matrices, such narrowband factorisations are suboptimal at best. To extend the utility of EVD and SVD to the broadband case, polynomial matrix factorisations have gained momen- tum over the past decade, and a number of iterative algorithms for particularly the polynomial matrix EVD (PEVD) have emerged. Existing iterative PEVD algorithms produce factorisations that are computationally costly (i) to calculate and (ii) to apply. For the former, iterative algorithms at every step eliminate off-diagonal energy, but this can be a slow process. For the latter, the polynomial order of the resulting factors, directly impacting on the implementa- ...
Corr, Jamie — University of Strathclyde
Estima e Igualacion Ciega de Canales MIMO con y sin Redudancia Espacial (title in Spanish)
The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multipleoutput (MIMO) systems, it has been proven that the second-order statistics of the observations provide the sufficient information for solving the blind problem. The aim ...
Rodriguez, Javier Via — Universidad de Cantabria
Sensor Fusion for Automotive Applications
Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...
Lundquist, Christian — Linköping University
Non-linear Spatial Filtering for Multi-channel Speech Enhancement
A large part of human speech communication takes place in noisy environments and is supported by technical devices. For example, a hearing-impaired person might use a hearing aid to take part in a conversation in a busy restaurant. These devices, but also telecommunication in noisy environments or voiced-controlled assistants, make use of speech enhancement and separation algorithms that improve the quality and intelligibility of speech by separating speakers and suppressing background noise as well as other unwanted effects such as reverberation. If the devices are equipped with more than one microphone, which is very common nowadays, then multi-channel speech enhancement approaches can leverage spatial information in addition to single-channel tempo-spectral information to perform the task. Traditionally, linear spatial filters, so-called beamformers, have been employed to suppress the signal components from other than the target direction and thereby enhance the desired ...
Tesch, Kristina — Universität Hamburg
Wideband Data-Independent Beamforming for Subarrays
The desire to operate large antenna arrays for e.g. RADAR applications over a wider frequency range is currently limited by the hardware, which due to weight, cost and size only permits complex multipliers behind each element. In contrast, wideband processing would have to rely on tap delay lines enabling digital filters for every element. As an intermediate step, in this thesis we consider a design where elements are grouped into subarrays, within which elements are still individually controlled by narrowband complex weights, but where each subarray output is given a tap delay line or finite impulse response digital filter for further wideband processing. Firstly, this thesis explores how a tap delay line attached to every subarray can be designed as a delay-and-sum beamformer. This filter is set to realised a fractional delay design based on a windowed sinc function. At ...
Alshammary, Abdullah — University of Strathclyde
Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems
Multiple-input multiple output (MIMO) systems deploy multiple antennas at either end of a communication link and can provide significant benefits compared to traditional single antenna systems, such as increased data rates through spatial multiplexing gain, and/or improved link reliability through diversity techniques. Recently, the natural extension of utilising multiple antennas in relay networks, known as MIMO relaying, has attracted significant research attention due to the fact that the benefits of MIMO can be coupled with extended network coverage through the use of relaying devices. This thesis concentrates on the design and analysis of different aspects of MIMO relay systems communicating over frequency selective channels with the use of orthogonal frequency division multiplexing (OFDM). The first focus of this thesis is on the development of training based channel estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of channel ...
Millar, Andrew Paul — University of Strathclyde
RIS Analysis from Communication and Electromagnetic Perspectives
The next generation of wireless communication networks will facilitate the connection of a large number of devices and a broad range of services. Serving such a large amount of user equipment (UEs) can be of very high cost if using active antenna solutions such as increasing the number of base stations (BSs), using massive multiple-input multiple-output (MIMO) antennas, and deploying relays between the BSs and the UEs. In this context, a passive antenna solution, such as reconfigurable intelligent surfaces (RISs), would be more beneficial and attractive. RIS has become an emerging technology with diverse applications in future wireless networks, owing to its ability to dynamically control and optimize the propagation environment. The rapid evolution driven by escalating performance demands of coverage in blocked line-of-sight (LOS) scenarios has prompted the exploration of RIS. Motivated by the potential benefits of RIS in ...
Le Hao — TU Wien
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.