## Advanced Signal Processing Techniques for Global Navigation Satellite Systems (2006)

Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers

This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...

Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya

Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning

This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...

Closas, Pau — Universitat Politecnica de Catalunya

GNSS Array-based Acquisition: Theory and Implementation

This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. GNSS ranging signals are received with very low signal-to-noise ratio. Despite that the GNSS CDMA modulation offers limited protection against Radio Frequency Interferences (RFI), an interference that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service. A growing concern of this problem has appeared in recent times. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in the presence of wideband interferences. Antenna arrays receivers can benefit from spatial-domain processing, and thus mitigate the effects of interfering signals. ...

Arribas, Javier — Universitat Politecnica de Catalunya

Analysis of Multipath Mitigation Techniques for Satellite-based Positioning Applications

Multipath remains a dominant source of ranging errors in any Global Navigation Satellite System (GNSS), such as the Global Positioning System (GPS) or the developing European satellite navigation system Galileo. Multipath is undesirable in the context of GNSS, since the reception of multipath can create significant distortion to the shape of the correlation function used in the time delay estimate of a Delay Locked Loop (DLL) of a navigation receiver, leading to an error in the receiver's position estimate. Therefore, in order to mitigate the impact of multipath on a navigation receiver, the multipath problem has been approached from several directions, including the development of novel signal processing techniques. Many of these techniques rely on modifying the tracking loop discriminator (i.e., the DLL and its enhanced variants) in order to make it resistant to multipath, but their performance in severe ...

Bhuiyan, Mohammad Zahidul Hasan — Tampere University of Technology

Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University

Efficient Multipath Mitigation in Navigation Systems

The main objective of the thesis is the development of efficient multipath mitigation techniques for navigation systems. By efficient mitigation we refer to the use of asymptotic efficient estimators, and also to the minimization of their computational burden. In this thesis, the efficient estimators are derived from the Maximum Likelihood Principle in several important scenarios. The computational burden is reduced in two ways. One is through data compression techniques that yield receiver implementations of small complexity and small data sizes. The other consists of the efficient implementation of Newton-type methods for the computation of the Maximum Likelihood estimators. The first part of the thesis is dedicated to present the fundamentals of synchronization in a navigation receiver, and to the state of the art in multipath mitigation. Afterward, several results concerning the interpolation of a band limited signal in a finite ...

Selva, Jesus — Technical University of Catalonia (UPC)

Advanced Tracking Loop Architectures for Multi-frequency GNSS Receiver

The multi-frequency Global Navigation Satellite System (GNSS) signals are designed to overcome the inherent performance limitations of single-frequency receivers. However, the processing of multiple frequency signals in a time-varying GNSS signal environment which are potentially affected by multipath, ionosphere scintillation, blockage, and interference is quite challenging, as each signal is influenced differently by channel effects according to its Radio Frequency (RF). In order to get the benefit of synchronously/coherently generated multiple frequency signals, advanced receiver signal processing techniques need to be developed. The aim of this research thesis is to extract the best performance benefits out of multifrequency GNSS signals in a time-varying GNSS signal environment. To accomplish this objective, it is necessary to analyze the multi-frequency signal characteristics and to investigate suitable signal processing algorithms in order to enable the best performance of each signal. The GNSS receiver position ...

Bolla, Padma — Tampere University of Technology, Finland and Samara University, Russia

GNSS Signal Processing and Spatial Diversity Exploitation

Global Navigation Satellite Systems (GNSS) signals are broadly used for positioning, navigation and timing (PNT) in many different applications and use cases. Although different PNT technologies are available, GNSS is expected to be a key player in the derivation of positioning and timing for many future applications, including those in the context of the Internet of Things (IoT) or autonomous vehicles, since it has the important advantage of being open access and worldwide available. Indeed, GNSS is performing very well in mild propagation conditions, achieving position and time synchronization accuracies down to the cm and ns levels, respectively. Nevertheless, the exploitation of GNSS in harsh propagation conditions typical of urban and indoor scenarios is very challenging, resulting in position errors of up to tens or even hundreds of meters, and timing accuracies of hundreds of ns. This thesis deals with ...

Garcia Molina, Jose Antonio — UPC

Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity

Robust GNSS Carrier Phase-based Position and Attitude Estimation

Navigation information is an essential element for the functioning of robotic platforms and intelligent transportation systems. Among the existing technologies, Global Navigation Satellite Systems (GNSS) have established as the cornerstone for outdoor navigation, allowing for all-weather, all-time positioning and timing at a worldwide scale. GNSS is the generic term for referring to a constellation of satellites which transmit radio signals used primarily for ranging information. Therefore, the successful operation and deployment of prospective autonomous systems is subject to our capabilities to support GNSS in the provision of robust and precise navigational estimates. GNSS signals enable two types of ranging observations: --code pseudorange, which is a measure of the time difference between the signal's emission and reception at the satellite and receiver, respectively, scaled by the speed of light; --carrier phase pseudorange, which measures the beat of the carrier signal and ...

Daniel Medina — German Aerospace Center (DLR)

A Statistical Theory for GNSS Signal Acquisition

Acquisition is the first stage of a Global Navigation Satellite System (GNSS) receiver and has the goal to determine which signals are in view and provide rough estimates of the signal parameters. The main objective of the thesis was to provide a complete and cohesive analysis of the acquisition process clarifying different aspects often neglected in the literature. The thesis provides the statistical tools required for the characterization of the acquisition process. In particular, the signal presence is determined by searching several candidates for the signal code delay and Doppler frequency which define a cell of the acquisition search space. Thus, the acquisition process is characterized by the strategy adopted for searching for the signal parameters and the way a decision metric is compute for each cell of the search space. Given this observation, the thesis introduces the concepts of ...

Daniele, Borio — Politecnico di Torino

Applications for the new generations of Global Navigation Satellite Systems (GNSS) are developing rapidly and attract a great interest. Both US Global Positioning System (GPS) and European Galileo signals use Direct Sequence-Code Division Multiple Access (DS-CDMA) technology, where code and frequency synchronization are important stages at the receiver. The GNSS receivers estimate jointly the code phase and the Doppler spread through a two-dimensional searching process in time-frequency plane. Since both GPS and Galileo systems will send several signals on the same carriers, a new modulation type - the Binary Offset Carrier (BOC) modulation, has been selected. The main target of this modulation is to provide a better spectral separation with the existing BPSK-modulated GPS signals, while allowing optimal usage of the available bandwidth for different GNSS signals. The BOC modulation family includes several BOC variants, such as sine BOC (SinBOC), ...

Burian, Adina — Universitat Trier

Deep Learning of GNSS Signal Detection

Global Navigation Satellite Systems (GNSS) is the de facto technology for Position, Navigation, and Timing (PNT) applications when it is available. GNSS relies on one or more satellite constellations that transmit ranging signals, which a receiver can use to self-localize. Signal acquisition is a crucial step in GNSS receivers, which is typically solved by maximizing the so-called Cross Ambiguity Function (CAF) resulting from a hypothesis testing problem. The CAF is a two-dimensional function that is related to the correlation between the received signal and a local code replica for every possible delay/Doppler pair, which is then maximized for signal detection and coarse synchronization. The outcome of this statistical process decides whether the signal from a particular satellite is present or absent in the received signal, as well as provides a rough estimate of its associated code delay and Doppler frequency, ...

Borhani Darian,Parisa — Northeastern University

Galileo Broadcast Ephemeris and Clock Errors, and Observed Fault Probabilities for ARAIM

The characterization of Clock and Ephemeris error of the Global Navigation Satellite Systems is a key element to validate the assumptions for the integrity analysis of GNSS Safety of Life (SoL) applications. Specifically, the performance metrics of SoL applications require the characterization of the nominal User Range Errors (UREs) as well as the knowledge of the probability of a satellite, Psat or a constellation fault, Pconst, i.e. when one or more satellites are not in the nominal mode. We will focus on Advanced Autonomous Integrity Monitoring (ARAIM). The present dissertation carries-out an end-to-end characterization and analysis of Galileo and GPS satellites for ARAIM. It involves two main targets. First, the characterization of Galileo and GPS broadcast ephemeris and clock errors, to determine the fault probabilities Psat and Pconst, and the determination on an upper bound of the nominal satellite ranging ...

Alonso Alonso, María Teresa — Universitat politecnica de Catalunya, Barcelona Tech

Change Detection Techniques for GNSS Signal-Level Integrity

The provision of accurate positioning is becoming essential to our modern society. One of the main reasons is the great success and ease of use of Global Navigation Satellite Systems (GNSSs), which has led to an unprecedented amount of GNSS-based applications. In particular, the current trend shows that a new era of GNSS-based applications and services is emerging. These applications are the so-called critical applications, in which the physical safety of users may be in danger due to a miss-performance of the positioning system. These applications have very stringent requirements in terms of integrity. Integrity is a measure of reliability and trust that can be placed on the information provided by the system. Integrity algorithms were originally designed for civil aviation in the 1980s. Unfortunately, GNSS-based critical applications are often associated with terrestrial environments and original integrity algorithms usually fail. ...

Egea-Roca, Daniel — Universitat Autònoma de Barcelona

The current layout is optimized for **mobile
phones**. Page previews, thumbnails, and full abstracts
will remain hidden until the browser window grows in width.

The current layout is optimized for **tablet
devices**. Page previews and some thumbnails will remain
hidden until the browser window grows in width.