THE ‘GAS OF CIRCLES’ MODEL AND ITS APPLICATION TO TREE CROWN EXTRACTION

We present the ‘gas of circles’ (GOC) model, which is a tool to describe a set of circles with an approximately fixed radius. The model is based on the recently introduced ‘higher-order active contour’(HOAC) framework. For certain ranges of the parameters, the model creates stable circles with an approximately fixed radius instead of networks. We show how to determine this set of parameters. The general ‘gas of circles’ model has many potential applications in varied domains, but it suffers from a drawback: the local minima corresponding to circles can trap the gradient descent algorithm, thus producing phantom circles even with no supporting data. We solve the problem of phantom circles by calculating, via a Taylor expansion of the energy, parameter values that make the circles into inflection points rather than minima. It is possible to create an alternative formulation of ...

Horvath, Peter — University of Szeged Hungary, INRIA Sophia Antipolis


Tracking and Planning for Surveillance Applications

Vision and infrared sensors are very common in surveillance and security applications, and there are numerous examples where a critical infrastructure, e.g. a harbor, an airport, or a military camp, is monitored by video surveillance systems. There is a need for automatic processing of sensor data and intelligent control of the sensor in order to obtain efficient and high performance solutions that can support a human operator. This thesis considers two subparts of the complex sensor fusion system; namely target tracking and sensor control.The multiple target tracking problem using particle filtering is studied. In particular, applications where road constrained targets are tracked with an airborne video or infrared camera are considered. By utilizing the information about the road network map it is possible to enhance the target tracking and prediction performance. A dynamic model suitable for on-road target tracking with ...

Skoglar, Per — Linköping University, Department of Electrical Engineering


Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Sensor Fusion for Automotive Applications

Mapping stationary objects and tracking moving targets are essential for many autonomous functions in vehicles. In order to compute the map and track estimates, sensor measurements from radar, laser and camera are used together with the standard proprioceptive sensors present in a car. By fusing information from different types of sensors, the accuracy and robustness of the estimates can be increased. Different types of maps are discussed and compared in the thesis. In particular, road maps make use of the fact that roads are highly structured, which allows relatively simple and powerful models to be employed. It is shown how the information of the lane markings, obtained by a front looking camera, can be fused with inertial measurement of the vehicle motion and radar measurements of vehicles ahead to compute a more accurate and robust road geometry estimate. Further, it ...

Lundquist, Christian — Linköping University


Functional Neuroimaging Data Characterisation Via Tensor Representations

The growing interest in neuroimaging technologies generates a massive amount of biomedical data that exhibit high dimensionality. Tensor-based analysis of brain imaging data has by now been recognized as an effective approach exploiting its inherent multi-way nature. In particular, the advantages of tensorial over matrix-based methods have previously been demonstrated in the context of functional magnetic resonance imaging (fMRI) source localization; the identification of the regions of the brain which are activated at specific time instances. However, such methods can also become ineffective in realistic challenging scenarios, involving, e.g., strong noise and/or significant overlap among the activated regions. Moreover, they commonly rely on the assumption of an underlying multilinear model generating the data. In the first part of this thesis, we aimed at investigating the possible gains from exploiting the 3-dimensional nature of the brain images, through a higher-order tensorization ...

Christos Chatzichristos — National and Kapodistrian University of Athens


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Contributions to the 3D city modeling: 3D polyhedral building model reconstruction from aerial images and 3D facade modeling from terrestrial 3D point cloud and images

The aim of this work is to develop research on 3D building modeling. In particular, the research in aerial-based 3D building reconstruction is a topic very developed since 1990. However, it is necessary to pursue the research since the actual approaches for 3D massive building reconstruction (although efficient) still encounter problems in generalization, coherency, accuracy. Besides, the recent developments of street acquisition systems such as Mobile Mapping Systems open new perspectives for improvements in building modeling in the sense that the terrestrial data (very dense and accurate) can be exploited with more performance (in comparison to the aerial investigation) to enrich the building models at facade level (e.g., geometry, texturing). Hence, aerial and terrestrial based building modeling approaches are individually proposed. At aerial level, we describe a direct and featureless approach for simple polyhedral building reconstruction from a set of ...

Hammoudi Karim — Université Paris-Est, Saint-Mandé, France


Bayesian resolution of the non linear inverse problem of Electrical Impedance Tomography with Finite Element modeling

Resistivity distribution estimation, widely known as Electrical Impedance Tomography (EIT), is a non linear ill-posed inverse problem. However, the partial derivative equation ruling this experiment yields no analytical solution for arbitrary conductivity distribution. Thus, solving the forward problem requires an approximation. The Finite Element Method (FEM) provides us with a computationally cheap forward model which preserves the non linear image-data relation and also reveals sufficiently accurate for the inversion. Within the Bayesian approach, Markovian priors on the log-conductivity distribution are introduced for regularization. The neighborhood system is directly derived from the FEM triangular mesh structure. We first propose a maximum a posteriori (MAP) estimation with a Huber-Markov prior which favours smooth distributions while preserving locally discontinuous features. The resulting criterion is minimized with the pseudo-conjugate gradient method. Simulation results reveal significant improvements in terms of robustness to noise, computation rapidity ...

Martin, Thierry — Laboratoire des signaux et systèmes


GNSS Localization and Attitude Determination via Optimization Techniques on Riemannian Manifolds

Global Navigation Satellite Systems (GNSS)-based localization and attitude determination are essential for many navigation and control systems widely used in aircrafts, spacecrafts, vessels, automobiles, and other dynamic platforms. A GNSS receiver can generate pseudo-range and carrier-phase observations based on the signals transmitted from the navigation satellites. Since the accuracy of the carrier phase is two orders of magnitude higher than that of the pseudo-range, it is crucial to employ the precise GNSS data, the carrier phase, to perform a high-accuracy position or/and attitude estimate. The main challenge to fully utilizing carrier-phase observations is to successfully resolve the unknown integer parts (number of whole cycles), a process usually referred to as integer ambiguity resolution. Many methods have been developed to resolve integer ambiguities with different performance offerings. Under challenging environments with insufficient tracked satellites, significant multipath interference, and severe atmospheric effects, ...

Xing Liu — King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia


Adaptive Edge-Enhanced Correlation Based Robust and Real-Time Visual Tracking Framework and Its Deployment in Machine Vision Systems

An adaptive edge-enhanced correlation based robust and real-time visual tracking framework, and two machine vision systems based on the framework are proposed. The visual tracking algorithm can track any object of interest in a video acquired from a stationary or moving camera. It can handle the real-world problems, such as noise, clutter, occlusion, uneven illumination, varying appearance, orientation, scale, and velocity of the maneuvering object, and object fading and obscuration in low contrast video at various zoom levels. The proposed machine vision systems are an active camera tracking system and a vision based system for a UGV (unmanned ground vehicle) to handle a road intersection. The core of the proposed visual tracking framework is an Edge Enhanced Back-propagation neural-network Controlled Fast Normalized Correlation (EE-BCFNC), which makes the object localization stage efficient and robust to noise, object fading, obscuration, and uneven ...

Ahmed, Javed — Electrical (Telecom.) Engineering Department, National University of Sciences and Technology, Rawalpindi, Pakistan.


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Meningioma (Brain Tumor) Classification using an Adaptive Discriminant Wavelet Packet Transform

Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for ...

Qureshi, Hammad — University of Warwick


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.