Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning

This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...

Closas, Pau — Universitat Politecnica de Catalunya


Performance Analysis of Bistatic Radar and Optimization methodology in Multistatic Radar System

This work deals with the problem of calculating the Cramer-Rao lower bounds (CRLBs) for bistatic radar channels. To this purpose we exploited the relation between the Ambiguity Function (AF) and the CRLB. The bistatic CRLBs are analyzed and compared to the monostatic counterparts as a function of the bistatic geometric parameters. In the bistatic case both geometry factors and transmitted waveforms play an important role in the shape of the AF, and therefore in the estimation accuracy of the target range and velocity. In particular, the CRLBs depend on the target direction of arrival, the bistatic baseline length, and the distance between the target and the receiver. The CRLBs are then used to select the optimum bistatic channel (or set of channels) for the tracking of a radar target moving along a trajectory in a multistatic scenario and for design ...

Stinco, Pietro — Universita di Pisa


Block Transmission Techniques for Wireless Communications

In order to meet the market demand for high datarates, most digital wireless communication systems rely on broadband channels and therefore suffer from Inter Symbol Interference (ISI), a phenomenon that needs to be combatted at the receiver by appropriate equalization techniques in order to restore the transmitted information. In this context, block transmission techniques based on the use of a Cyclic-Prefix (CP) have attracted a lot of attention in the last years for they allow an efficient and computationally cheap ISI cancellation procedure. Historically, OFDM (Orthogonal Frequency Division Multiplexing) was the first proposed block transmission scheme and has been adopted in numerous standards for high-speed data transmission in both wired and wireless applications. In the wireless context however, OFDM suffers of several problems, both on an implementational point of view and from a performance perspective. Some recently proposed block transmission ...

Rousseaux, Olivier — Katholieke Universiteit Leuven


Interweave/Underlay Cognitive Radio Techniques and Applications in Satellite Communication Systems

The demand for precious radio spectrum is continuously increasing while the available radio frequency resource has become scarce due to spectrum segmentation and the dedicated frequency allocation of standardized wireless systems. This scarcity has led to the concept of cognitive radio communication which comprises a variety of techniques capable of allowing the coexistence of licensed and unlicensed systems over the same spectrum. In this context, this thesis focuses on interweave and underlay cognitive radio paradigms which are widely considered as important enablers for realising cognitive radio technology. In the interweave paradigm, an unlicensed user explores the spectral holes by means of some spectrum awareness methods and utilizes the available spectral availabilities opportunistically while in the underlay paradigm, an unlicensed user is allowed to coexist with the licensed user only if sufficient protection to the licensed user can be guaranteed. Starting ...

Sharma, Shree Krishna — SnT, University of Luxembourg


The Removal of Environmental Noise in Cellular Communications by Perceptual Techniques

This thesis describes the application of a perceptually based spectral subtraction algorithm for the enhancement of non-stationary noise corrupted speech. Through examination of speech enhancement techniques, explanations are given for the choice of magnitude spectral subtraction and how the human auditory system can be modelled for frequency domain speech enhancement. It is discovered, that the cochlea provides the mechanical speech enhancement in the auditory system, through the use of masking. Frequency masking is used in spectral subtraction, to improve the algorithm execution time, and to shape the enhancement process making it sound natural to the ear. A new technique for estimation of background noise is presented, which operates during speech sections as well as pauses. This uses two microphones placed on opposite ends of the cellular handset. Using these, the algorithm determines whether the signal is speech, or noise, by ...

Tuffy, Mark — University Of Edinburgh


Advanced Multi-Dimensional Signal Processing for Wireless Systems

The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...

Cheng, Yao — Ilmenau University of Technology


Advanced Signal Processing Techniques for Global Navigation Satellite Systems

This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...

Fernandez-Prades, Carles — Universitat Politecnica de Catalunya


TRACKER-AWARE DETECTION: A THEORETICAL AND AN EXPERIMENTAL STUDY

A promising line of research attempts to bridge the gap between detector and tracker by means of considering jointly optimal parameter settings for both of these subsystems. Along this fruitful path, this thesis study focuses on the problem of detection threshold optimization in a tracker-aware manner so that a feedback from the tracker to the detector is established to maximize the overall system performance. Special emphasis is given to the optimization schemes based on two non-simulation performance prediction (NSPP) methodologies for the probabilistic data association filter (PDAF), namely, the modified Riccati equation (MRE) and the hybrid conditional averaging (HYCA) algorithm. The possible improvements are presented in two domains: Non-maneuvering and maneuvering target tracking. In the first domain, a number of algorithmic and experimental evaluation gaps are identified and newly proposed methods are compared with the existing ones in a unified ...

Aslan, Murat Samil — Middle East Technical University


Advanced Tracking Loop Architectures for Multi-frequency GNSS Receiver

The multi-frequency Global Navigation Satellite System (GNSS) signals are designed to overcome the inherent performance limitations of single-frequency receivers. However, the processing of multiple frequency signals in a time-varying GNSS signal environment which are potentially affected by multipath, ionosphere scintillation, blockage, and interference is quite challenging, as each signal is influenced differently by channel effects according to its Radio Frequency (RF). In order to get the benefit of synchronously/coherently generated multiple frequency signals, advanced receiver signal processing techniques need to be developed. The aim of this research thesis is to extract the best performance benefits out of multifrequency GNSS signals in a time-varying GNSS signal environment. To accomplish this objective, it is necessary to analyze the multi-frequency signal characteristics and to investigate suitable signal processing algorithms in order to enable the best performance of each signal. The GNSS receiver position ...

Bolla, Padma — Tampere University of Technology, Finland and Samara University, Russia


Performance Evaluation of Practical OFDM Systems with Imperfect Synchronization

This work aims to expose the potential performance loss due to synchronization errors in the downlink of the two major cellular standards of OFDM systems, i.e., the WiMAX OFDM physical layer and the LTE. Different to most results in literature, the physical layer coded throughput is utilized as the major performance measure. The influence of an imperfect carrier frequency synchronization or symbol timing is evaluated via analytical modeling and standard compliant link level simulations. In the frequency aspect, a modified differential estimator for the residual frequency offset in WiMAX is proposed. It is shown that the theoretical performance of such an estimator approaches the Cramer-Rao lower bound and provides a significant gain in terms of the mean squared error. However, such an improvement becomes negligible in terms of the coded throughput. Therefore, a throughput loss prediction model is proposed for ...

Wang, Qi — Vienna University of Technology


Distributed Source Coding. Tools and Applications to Video Compression

Distributed source coding is a technique that allows to compress several correlated sources, without any cooperation between the encoders, and without rate loss provided that the decoding is joint. Motivated by this principle, distributed video coding has emerged, exploiting the correlation between the consecutive video frames, tremendously simplifying the encoder, and leaving the task of exploiting the correlation to the decoder. The first part of our contributions in this thesis presents the asymmetric coding of binary sources that are not uniform. We analyze the coding of non-uniform Bernoulli sources, and that of hidden Markov sources. For both sources, we first show that exploiting the distribution at the decoder clearly increases the decoding capabilities of a given channel code. For the binary symmetric channel modeling the correlation between the sources, we propose a tool to estimate its parameter, thanks to an ...

Toto-Zarasoa, Velotiaray — INRIA Rennes-Bretagne Atlantique, Universite de Rennes 1


Post-Filter Optimization for Multichannel Automotive Speech Enhancement

In an automotive environment, quality of speech communication using a hands-free equipment is often deteriorated by interfering car noise. In order to preserve the speech signal without car noise, a multichannel speech enhancement system including a beamformer and a post-filter can be applied. Since employing a beamformer alone is insufficient to substantially reducing the level of car noise, a post-filter has to be applied to provide further noise reduction, especially at low frequencies. In this thesis, two novel post-filter designs along with their optimization for different driving conditions are presented. The first post-filter design utilizes an adaptive smoothing factor for the power spectral density estimation as well as a hybrid noise coherence function. The hybrid noise coherence function is a mixture of the diffuse and the measured noise coherence functions for a specific driving condition. The second post-filter design applies ...

Yu, Huajun — Technische Universität Braunschweig


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Waveform Advancements and Synchronization Techniques for Generalized Frequency Division Multiplexing

To enable a new level of connectivity among machines as well as between people and machines, future wireless applications will demand higher requirements on data rates, response time, and reliability from the communication system. This will lead to a different system design, comprising a wide range of deployment scenarios. One important aspect is the evolution of physical layer (PHY), specifically the waveform modulation. The novel generalized frequency division multiplexing (GFDM) technique is a prominent proposal for a flexible block filtered multicarrier modulation. This thesis introduces an advanced GFDM concept that enables the emulation of other prominent waveform candidates in scenarios where they perform best. Hence, a unique modulation framework is presented that is capable of addressing a wide range of scenarios and to upgrade the PHY for 5G networks. In particular, for a subset of system parameters of the modulation ...

Gaspar, Ivan — Technische Universität Dresden

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.