On Ways to Improve Adaptive Filter Performance

Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...

Sankaran, Sundar G. — Virginia Tech


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Design and evaluation of digital signal processing algorithms for acoustic feedback and echo cancellation

This thesis deals with several open problems in acoustic echo cancellation and acoustic feedback control. Our main goal has been to develop solutions that provide a high performance and sound quality, and behave in a robust way in realistic conditions. This can be achieved by departing from the traditional ad-hoc methods, and instead deriving theoretically well-founded solutions, based on results from parameter estimation and system identification. In the development of these solutions, the computational efficiency has permanently been taken into account as a design constraint, in that the complexity increase compared to the state-of-the-art solutions should not exceed 50 % of the original complexity. In the context of acoustic echo cancellation, we have investigated the problems of double-talk robustness, acoustic echo path undermodeling, and poor excitation. The two former problems have been tackled by including adaptive decorrelation filters in the ...

van Waterschoot, Toon — Katholieke Universiteit Leuven


Stability of Coupled Adaptive Filters

Nowadays, many disciplines in science and engineering deal with problems for which a solution relies on knowledge about the characteristics of one or more given systems that can only be ascertained based on restricted observations. This requires the fitting of an adequately chosen model, such that it “best” conforms to a set of measured data. Depending on the context, this fitting procedure may resort to a huge amount of recorded data and abundant numerical power, or contrarily, to only a few streams of samples, which have to be processed on the fly at low computational cost. This thesis, exclusively focuses on the latter scenario. It specifically studies unexpected behaviour and reliability of the widely spread and computationally highly efficient class of gradient type algorithms. Additionally, special attention is paid to systems that combine several of them. Chapter 3 is dedicated ...

Dallinger, Robert — TU Wien


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Adaptive interference suppression algorithms for DS-UWB systems

In multiuser ultra-wideband (UWB) systems, a large number of multipath components (MPCs) are introduced by the channel. One of the main challenges for the receiver is to effectively suppress the interference with affordable complexity. In this thesis, we focus on the linear adaptive interference suppression algorithms for the direct-sequence ultrawideband (DS-UWB) systems in both time-domain and frequency-domain. In the time-domain, symbol by symbol transmission multiuser DS-UWB systems are considered. We first investigate a generic reduced-rank scheme based on the concept of joint and iterative optimization (JIO) that jointly optimizes a projection vector and a reduced-rank filter by using the minimum mean-squared error (MMSE) criterion. A low-complexity scheme, named Switched Approximations of Adaptive Basis Functions (SAABF), is proposed as a modification of the generic scheme, in which the complexity reduction is achieved by using a multi-branch framework to simplify the structure ...

Sheng Li — University of York


Efficient parametric modeling, identification and equalization of room acoustics

Room acoustic signal enhancement (RASE) applications, such as digital equalization, acoustic echo and feedback cancellation, which are commonly found in communication devices and audio equipment, aim at processing the acoustic signals with the final goal of improving the perceived sound quality in rooms. In order to do so, signal processing algorithms require the acoustic response of the room to be represented by means of parametric models and to be identified from the input and output signals of the room acoustic system. In particular, a good model should be both accurate, thus capturing those features of room acoustics that are physically and perceptually most relevant, and efficient, so that it can be implemented as a digital filter and used in practical signal processing tasks. This thesis addresses the fundamental question in room acoustic signal processing concerning the appropriateness of different parametric ...

Vairetti, Giacomo — KU Leuven


Efficient Interference Suppression and Resource Allocation in MIMO and DS-CDMA Wireless Networks

Direct-sequence code-divisionmultiple-access (DS-CDMA) and multiple-input multiple-output (MIMO) wireless networks form the physical layer of the current generation of mobile networks and are anticipated to play a key role in the next generation of mobile networks. The improvements in capacity, data-rates and robustness that these networks provide come at the cost of increasingly complex interference suppression and resource allocation. Consequently, efficient approaches to these tasks are essential if the current rate of progression in mobile technology is to be sustained. In this thesis, linear minimum mean-square error (MMSE) techniques for interference suppression and resource allocation in DS-CDMA and cooperative MIMO networks are considered and a set of novel and efficient algorithms proposed. Firstly, set-membership (SM) reduced-rank techniques for interference suppression in DS-CDMA systems are investigated. The principals of SM filtering are applied to the adaptation of the projection matrix and reduced-rank ...

Patrick Clarke — University of York


Advanced Interference Suppression Techniques for Spread Spectrum Systems

Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...

Yunlong Cai — University of York


Advances in DFT-Based Single-Microphone Speech Enhancement

The interest in the field of speech enhancement emerges from the increased usage of digital speech processing applications like mobile telephony, digital hearing aids and human-machine communication systems in our daily life. The trend to make these applications mobile increases the variety of potential sources for quality degradation. Speech enhancement methods can be used to increase the quality of these speech processing devices and make them more robust under noisy conditions. The name "speech enhancement" refers to a large group of methods that are all meant to improve certain quality aspects of these devices. Examples of speech enhancement algorithms are echo control, bandwidth extension, packet loss concealment and noise reduction. In this thesis we focus on single-microphone additive noise reduction and aim at methods that work in the discrete Fourier transform (DFT) domain. The main objective of the presented research ...

Hendriks, Richard Christian — Delft University of Technology


Distributed Stochastic Optimization in Non-Differentiable and Non-Convex Environments

The first part of this dissertation considers distributed learning problems over networked agents. The general objective of distributed adaptation and learning is the solution of global, stochastic optimization problems through localized interactions and without information about the statistical properties of the data. Regularization is a useful technique to encourage or enforce structural properties on the resulting solution, such as sparsity or constraints. A substantial number of regularizers are inherently non-smooth, while many cost functions are differentiable. We propose distributed and adaptive strategies that are able to minimize aggregate sums of objectives. In doing so, we exploit the structure of the individual objectives as sums of differentiable costs and non-differentiable regularizers. The resulting algorithms are adaptive in nature and able to continuously track drifts in the problem; their recursions, however, are subject to persistent perturbations arising from the stochastic nature of ...

Vlaski, Stefan — University of California, Los Angeles


Nonlinear Noise Cancellation

Noise or interference is often assumed to be a random process. Conventional linear filtering, control or prediction techniques are used to cancel or reduce the noise. However, some noise processes have been shown to be nonlinear and deterministic. These nonlinear deterministic noise processes appear to be random when analysed with second order statistics. As nonlinear processes are widespread in nature it may be beneficial to exploit the coherence of the nonlinear deterministic noise with nonlinear filtering techniques. The nonlinear deterministic noise processes used in this thesis are generated from nonlinear difference or differential equations which are derived from real world scenarios. Analysis tools from the theory of nonlinear dynamics are used to determine an appropriate sampling rate of the nonlinear deterministic noise processes and their embedding dimensions. Nonlinear models, such as the Volterra series filter and the radial basis function ...

Strauch, Paul E. — University Of Edinburgh


Adaptive Signal Processing for Power Line Communications

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...

Tripodi, Carlo — Università degli Studi di Parma


Equalization and echo cancellation in DMT-based systems

Digital subscriber line (DSL) is a technology to provide broadband communications over the existing twisted pair telephone network. The signals received by a DSL modem are typically corrupted by channel induced noise, background noise, radio frequeny interference (RFI) and undesired echo. In this thesis we focus on the design of digital signal processing algorithms to improve the bit rate and/or the loop reach of current and future DSL systems. Furthermore, in the proposed algorithms we aim at keeping the hardware cost as low as possible. The transmission format of many DSL systems is based on discrete multitone modulation (DMT). To combat channel induced noise, DMT-based receivers perform an equalization step by means of a time domain equalizer (TEQ) and a one-tap frequency domain equalizer (FEQ) per used tone. Despite the variety of TEQ design methods presented in the literature, we ...

Ysebaert, Geert — Katholieke Universiteit Leuven


Some Contributions to Adaptive Filtering for Acoustic Multiple-Input/Multiple-Output Systems in the Wave Domain

Recently emerging techniques like wave field synthesis (WFS) or Higher-Order Ambisonics (HOA) allow for high-quality spatial audio reproduction, which makes them candidates for the audio reproduction in future telepresence systems or interactive gaming environments with acoustic human-machine interfaces. In such scenarios, acoustic echo cancellation (AEC) will generally be necessary to remove the loudspeaker echoes in the recorded microphone signals before further processing. Moreover, the reproduction quality of WFS or HOA can be improved by adaptive pre-equalization of the loudspeaker signals, as facilitated by listening room equalization (LRE). However, AEC and LRE require adaptive filters, where the large number of reproduction channels of WFS and HOA imply major computational and algorithmic challenges for the implementation of adaptive filters. A technique called wave-domain adaptive filtering (WDAF) promises to master these challenges. However, known literature is still far away from providing sufficient insight ...

Schneider, Martin — Friedrich-Alexander-University Erlangen-Nuremberg

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.