Model-Based Deep Speech Enhancement for Improved Interpretability and Robustness

Technology advancements profoundly impact numerous aspects of life, including how we communicate and interact. For instance, hearing aids enable hearing-impaired or elderly people to participate comfortably in daily conversations; telecommunications equipment lifts distance constraints, enabling people to communicate remotely; smart machines are developed to interact with humans by understanding and responding to their instructions. These applications involve speech-based interaction not only between humans but also between humans and machines. However, the microphones mounted on these technical devices can capture both target speech and interfering sounds, posing challenges to the reliability of speech communication in noisy environments. For example, distorted speech signals may reduce communication fluency among participants during teleconferencing. Additionally, noise interference can negatively affect the speech recognition and understanding modules of a voice-controlled machine. This calls for speech enhancement algorithms to extract clean speech and suppress undesired interfering signals, ...

Fang, Huajian — University of Hamburg


A Geometric Deep Learning Approach to Sound Source Localization and Tracking

The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy ...

Diaz-Guerra, David — University of Zaragoza


Good Features to Correlate for Visual Tracking

Estimating object motion is one of the key components of video processing and the first step in applications which require video representation. Visual object tracking is one way of extracting this component, and it is one of the major problems in the field of computer vision. Numerous discriminative and generative machine learning approaches have been employed to solve this problem. Recently, correlation filter based (CFB) approaches have been popular due to their computational efficiency and notable performances on benchmark datasets. The ultimate goal of CFB approaches is to find a filter (i.e., template) which can produce high correlation outputs around the actual object location and low correlation outputs around the locations that are far from the object. Nevertheless, CFB visual tracking methods suffer from many challenges, such as occlusion, abrupt appearance changes, fast motion and object deformation. The main reasons ...

Gundogdu, Erhan — Middle East Technical University


Learning Transferable Knowledge through Embedding Spaces

The unprecedented processing demand, posed by the explosion of big data, challenges researchers to design efficient and adaptive machine learning algorithms that do not require persistent retraining and avoid learning redundant information. Inspired from learning techniques of intelligent biological agents, identifying transferable knowledge across learning problems has been a significant research focus to improve machine learning algorithms. In this thesis, we address the challenges of knowledge transfer through embedding spaces that capture and store hierarchical knowledge. In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first address zero-shot image classification, where the goal is to identify images from unseen classes using semantic descriptions of these classes. We train two coupled dictionaries which align visual and semantic domains via an intermediate embedding space. We then extend this idea by training deep networks that ...

Mohammad Rostami — University of Pennsylvania


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


Digital Audio Processing Methods for Voice Pathology Detection

Voice pathology is a diverse field that includes various disorders affecting vocal quality and production. Using audio machine learning for voice pathology classification represents an innovative approach to diagnosing a wide range of voice disorders. Despite extensive research in this area, there remains a significant gap in the development of classifiers and their ability to adapt and generalize effectively. This thesis aims to address this gap by contributing new insights and methods. This research provides a comprehensive exploration of automatic voice pathology classification, focusing on challenges such as data limitations and the potential of integrating multiple modalities to enhance diagnostic accuracy and adaptability. To achieve generalization capabilities and enhance the flexibility of the classifier across diverse types of voice disorders, this research explores various datasets and pathology types comprehensively. It covers a broad range of voice disorders, including functional dysphonia, ...

Ioanna Miliaresi — University of Pireaus


Geometry-aware sound source localization using neural networks

Sound Source Localization (SSL) is the topic within acoustic signal processing which studies methods for the estimation of the position of one or more active sound sources in space, such as human talkers, using signals captured by one or more microphone arrays. It has many applications, including robot orientation, speech enhancement and diarization. Although signal processing-based algorithms have been the standard choice for SSL over past decades, deep neural networks have recently achieved state-of-the-art performance for this task. A drawback of most deep learning-based SSL methods consists of requiring the training and testing microphone and room geometry to be matched, restricting practical applications of available models. This is particularly relevant when using Distributed Microphone Arrays (DMAs), whose positions are usually set arbitrarily and may change with time. Flexibility to microphone geometry is also desirable for companies maintaining multiple types of ...

Grinstein, Eric — Imperial College London


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


SPACE-TIME PARAMETRIC APPROACH TO EXTENDED AUDIO REALITY (SP-EAR)

The term extended reality refers to all possible interactions between real and virtual (computed generated) elements and environments. The extended reality field is rapidly growing, primarily through augmented and virtual reality applications. The former allows users to bring digital elements into the real world, while the latter lets us experience and interact with an entirely virtual environment. While currently extended reality implementations primarily focus on the visual domain, we cannot underestimate the impact of auditory perception in order to provide a fully immersive experience. As a matter of fact, effective handling of the acoustic content is able to enrich the engagement of users. We refer to Extended Audio Reality (EAR) as the subset of extended reality operations related to the audio domain. In this thesis, we propose a parametric approach to EAR conceived in order to provide an effective and ...

Pezzoli Mirco — Politecnico di Milano


Time-domain music source separation for choirs and ensembles

Music source separation is the task of separating musical sources from an audio mixture. It has various direct applications including automatic karaoke generation, enhancing musical recordings, and 3D-audio upmixing; but also has implications for other downstream music information retrieval tasks such as multi-instrument transcription. However, the majority of research has focused on fixed stem separation of vocals, drums, and bass stems. While such models have highlighted capabilities of source separation using deep learning, their implications are limited to very few use cases. Such models are unable to separate most other instruments due to insufficient training data. Moreover, class-based separation inherently limits the applicability of such models to be unable to separate monotimbral mixtures. This thesis focuses on separating musical sources without requiring timbral distinction among the sources. Preliminary attempts focus on the separation of vocal harmonies from choral ensembles using ...

Sarkar, Saurjya — Queen Mary University of London


Voice biometric system security: Design and analysis of countermeasures for replay attacks

Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...

Bhusan Chettri — Queen Mary University of London


Analysis and Design of Linear Classifiers for High-Dimensional, Small Sample Size Data Using Asymptotic Random Matrix Theory

Due to a variety of potential barriers to sample acquisition, many of the datasets encountered in important classification applications, ranging from tumor identification to facial recognition, are characterized by small samples of high-dimensional data. In such situations, linear classifiers are popular as they have less risk of overfitting while being faster and more interpretable than non-linear classifiers. They are also easier to understand and implement for the inexperienced practitioner. In this dissertation, several gaps in the literature regarding the analysis and design of linear classifiers for high-dimensional data are addressed using tools from the field of asymptotic Random Matrix Theory (RMT) which facilitate the derivation of limits of relevant quantities or distributions, such as the probability of misclassification of a particular classifier or the asymptotic distribution of its discriminant, in the RMT regime where both the sample size and dimensionality ...

Niyazi, Lama — King Abdullah University of Science and Technology


Audio Embeddings for Semi-Supervised Anomalous Sound Detection

Detecting anomalous sounds is a difficult task: First, audio data is very high-dimensional and anomalous signal components are relatively subtle in relation to the entire acoustic scene. Furthermore, normal and anomalous audio signals are not inherently different because defining these terms strongly depends on the application. Third, usually only normal data is available for training a system because anomalies are rare, diverse, costly to produce and in many cases unknown in advance. Such a setting is called semi-supervised anomaly detection. In domain-shifted conditions or when only very limited training data is available, all of these problems are even more severe. The goal of this thesis is to overcome these difficulties by teaching an embedding model to learn data representations suitable for semi-supervised anomalous sound detection. More specifically, an anomalous sound detection system is designed such that the resulting representations of ...

Wilkinghoff, Kevin — Rheinische Friedrich-Wilhelms-Universität Bonn


Contrastive Reasoning in Neural Networks

The objective of the dissertation is to rethink the inductive nature of reasoning in neural networks by providing contextual explanations to a network’s decision and addressing the network's robustness capabilities. Neural networks represent data as projections on trained weights in a high dimensional manifold. The trained weights act as a knowledge base consisting of causal class dependencies. Inference built on features that identify dependencies within this manifold is termed as inductive feed-forward inference. This is a classical cause-to-effect inference model that is widely used because of its simple mathematical functionality and ease of operation. Nevertheless, feed-forward models do not generalize well to untrained situations. To alleviate this generalization challenge, we use an effect-to-cause inference model that falls under the abductive reasoning framework. Here, the features represent the change from existing weight dependencies given a certain effect. In this dissertation, we ...

Prabhushankar, Mohit — Georgia Institute of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.