Abstract / truncated to 115 words (read the full abstract)

Music source separation is the task of separating musical sources from an audio mixture. It has various direct applications including automatic karaoke generation, enhancing musical recordings, and 3D-audio upmixing; but also has implications for other downstream music information retrieval tasks such as multi-instrument transcription. However, the majority of research has focused on fixed stem separation of vocals, drums, and bass stems. While such models have highlighted capabilities of source separation using deep learning, their implications are limited to very few use cases. Such models are unable to separate most other instruments due to insufficient training data. Moreover, class-based separation inherently limits the applicability of such models to be unable to separate monotimbral mixtures. This thesis ... toggle 4 keywords

music source separation deep learning machine learning audio engineering


Sarkar, Saurjya
Queen Mary University of London
Publication Year
Upload Date
April 2, 2024

First few pages / click to enlarge

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.