Massive MIMO and Multi-hop Mobile Communication Systems (2024)
Spatial Modulation Schemes and Modem Architectures For Millimeter Wave Radio Systems
The rapid growth of wireless industry opens the door to several use cases such as internet of things and device to device communications which require boosting the reliability and the spectral efficiency (SE) of the wireless access network, while reducing the energy consumption at the terminals. The vast spectrum available in millimeter-wave (mmWave) frequency band is one of the most promising candidates to achieve high speed communications. However, the propagation of the radio signals at high carrier frequencies suffers from severe path-loss which reduces the coverage area. Fortunately, the small wavelengths of the mmWave signals allow packing a large number of antennas not only at the base station (BS) but also at the user terminal (UT). These massive antenna arrays can be exploited to attain high beamforming and combining gains and overcome the path-loss associated with the mmWave propagation. Conventional ...
Raafat, Ahmed — Universitat Politecnica de Catalunya
Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems
Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...
Nwalozie, Gerald Chetachi — Technische Universität Ilmenau
Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems
The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...
Cheema, Sher Ali — Technische Universität Ilmenau
Massive MIMO: Fundamentals and System Designs
The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...
Ngo, Quoc Hien — Linköping University
RIS Analysis from Communication and Electromagnetic Perspectives
The next generation of wireless communication networks will facilitate the connection of a large number of devices and a broad range of services. Serving such a large amount of user equipment (UEs) can be of very high cost if using active antenna solutions such as increasing the number of base stations (BSs), using massive multiple-input multiple-output (MIMO) antennas, and deploying relays between the BSs and the UEs. In this context, a passive antenna solution, such as reconfigurable intelligent surfaces (RISs), would be more beneficial and attractive. RIS has become an emerging technology with diverse applications in future wireless networks, owing to its ability to dynamically control and optimize the propagation environment. The rapid evolution driven by escalating performance demands of coverage in blocked line-of-sight (LOS) scenarios has prompted the exploration of RIS. Motivated by the potential benefits of RIS in ...
Le Hao — TU Wien
Massive MIMO Technologies for 5G and Beyond-5G Wireless Networks
Massive multiple input multiple output (MIMO) is a promising 5G and beyond-5G wireless access technology that can provide huge throughput, compared with the current technology, in order to satisfy some requirements for the future generations of wireless networks. The research described in this thesis proposes the design of some applications of the massive MIMO technology that can be implemented in order to increase the spectral efficiency per cell of the future wireless networks through a simple and low complexity signal processing. In particular, massive MIMO is studied in conjunction with two other topics that are currently under investigation for the future wireless systems, both in academia and in industry: the millimeter wave frequencies and the distributed antenna systems. The first part of the thesis gives a brief overview on the requirements of the future wireless networks and it explains some ...
D'Andrea, Carmen — Università di Cassino e del Lazio Meridionale
Sparse Bayesian learning, beamforming techniques and asymptotic analysis for massive MIMO
Multiple antennas at the base station side can be used to enhance the spectral efficiency and energy efficiency of the next generation wireless technologies. Indeed, massive multi-input multi-output (MIMO) is seen as one promising technology to bring the aforementioned benefits for fifth generation wireless standard, commonly known as 5G New Radio (5G NR). In this monograph, we will explore a wide range of potential topics in multi-user MIMO (MU-MIMO) relevant to 5G NR, • Sum rate maximizing beamforming (BF) design and robustness to partial channel state information at the transmitter (CSIT) • Asymptotic analysis of the various BF techniques in massiveMIMO and • Bayesian channel estimationmethods using sparse Bayesian learning. While massive MIMO has the aforementioned benefits, it makes the acquisition of the channel state information at the transmitter (CSIT) very challenging. Since it requires large amount of uplink (UL) ...
Christo Kurisummoottil Thomas — EURECOM ( SORBONNE UNIVERSITY, FRANCE)
Tensor-Based Approaches for Channel Estimation in IRS-Assisted MIMO Wireless Communications
The fifth-generation (5G) is in its business version, and researchers have started to look at the potential technologies to be employed in the next generation. In this context, intelligent reflecting surface (IRS) is a promising technology for the sixth-generation (6G) of wireless systems by introducing the smart radio environment concept. The promised gains of IRS-assisted communications depend on the accuracy of the channel state information. Using a tensor framework, particularly tensor decomposition, we propose different solutions to solve the channel estimation problem for different scenarios. We firstly address the receiver design for an IRS-assisted multiple-input multiple-output (MIMO) communication system via a tensor modeling approach to solve the channel estimation problem using supervised (pilot-assisted) methods. Considering a structured time-domain pattern of pilots and IRS phase shifts, we present two channel estimation methods that rely on a parallel factors (PARAFAC) tensor modeling ...
de Araújo, Gilderlan Tavares — Federal University of Ceara
Towards Massive Connectivity via Uplink Code-Domain NOMA
Abstract Future mobile networks are envisioned to provide wireless access to a massive number of devices. The substantial increase in connectivity comes mainly from machine-type communication (MTC), for which a large number of low-rate transmissions take place. Accommodating access for such a large number of user equipment (UEs) can be inefficient if applied to current network architectures, which are mainly based on orthogonal multiple access (OMA) and scheduling-based transmissions. This is due to the resulting control overhead and increased access delay. The framework of non-orthogonal multiple access (NOMA) has attracted attention recently as a promising solution to tackle these issues. It allows multiple UEs to access the network simultaneously over the same resources, and provides naturally, the support for grant-free access, in which no explicit scheduling of the UEs is required. Motivated by the potential benefits of NOMA in enabling ...
Bashar Tahir — TU Wien
Advanced Multi-Dimensional Signal Processing for Wireless Systems
The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element ...
Cheng, Yao — Ilmenau University of Technology
ALLOCATION DE RESSOURCES OPTIMISÉE PAR IA POUR LES COMMUNICATIONS SANS FIL AMÉLIORÉES PAR LES RIS
Les réseaux 6G (en anglais 6G, sixth generation) prévus présentent de nombreux défis et opportunités pour améliorer les débits de données, l’EE (en anglais EE, Energy Efficiency), la couverture mondiale, la fiabilité et la latence. Ces systèmes utilisent des technologies innovantes telles que les RIS (en anglais RIS, Reconfigurable Intelligent Surfaces), le MIMO (en anglais MIMO, Multiple Input Multiple Output) et les communications THz (en anglais THz, Terahertz Communications). Les canaux sans fil intelligents et adaptables proposés par la technologie RIS permettent un contrôle dynamique de la propagation du signal en manipulant l’environnement sans fil. Il est possible d’améliorer considérablement les performances du système en optimisant le déploiement et l’utilisation des systèmes de communication assistés par RIS. L’EE est un indicateur clé de performance, et la technologie RIS présente des perspectives prometteuses pour l’améliorer grâce à une consommation d’énergie réduite ...
Samaneh Bidabadi — UQTR
Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs
5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision ...
LI, ANG — University College London
Large Multiuser MIMO Detection: Algorithms and Architectures
After decades of research on multiple-input multiple-output (MIMO) technology, including paradigm shifts from point-to-point to multiuser MIMO (MU-MIMO), an ample literature exists on techniques to exploit the spatial dimension to increase link throughput and network capacity of wireless communication systems. Massive MIMO, which supports hundreds of antennas at the base station (BS), is celebrated as the key enabling technology of the upcoming fifth generation (5G) wireless communication standard. However, the use of large MIMO systems in the future is also indispensable, especially for high-speed wireless backhaul connectivity. Large MIMO systems use tens of antennas in communication terminals, and can afford a large number of antennas on both the transmitter and the receiver sides. While favorable propagation in massive MIMO ensures that reliable performance can be achieved by simple linear processing, the inherent symmetry in large MIMO renders the computational complexity ...
Sarieddeen, Hadi — American University of Beirut (AUB)
Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing
Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...
Roemer, Florian — Ilmenau University of Technology
Non-linear Spatial Filtering for Multi-channel Speech Enhancement
A large part of human speech communication takes place in noisy environments and is supported by technical devices. For example, a hearing-impaired person might use a hearing aid to take part in a conversation in a busy restaurant. These devices, but also telecommunication in noisy environments or voiced-controlled assistants, make use of speech enhancement and separation algorithms that improve the quality and intelligibility of speech by separating speakers and suppressing background noise as well as other unwanted effects such as reverberation. If the devices are equipped with more than one microphone, which is very common nowadays, then multi-channel speech enhancement approaches can leverage spatial information in addition to single-channel tempo-spectral information to perform the task. Traditionally, linear spatial filters, so-called beamformers, have been employed to suppress the signal components from other than the target direction and thereby enhance the desired ...
Tesch, Kristina — Universität Hamburg
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.