## Modern Optimization Methods for Interpolation of Missing Sections in Audio Signals (2024)

In natural listening environments, speech signals are easily distorted by variousacoustic interference, which reduces the speech quality and intelligibility of human listening; meanwhile, it makes difficult for many speech-related applications, such as automatic speech recognition (ASR). Thus, many speech enhancement (SE) algorithms have been developed in the past decades. However, most current SE algorithms are difficult to capture underlying speech information (e.g., phoneme) in the SE process. This causes it to be challenging to know what specific information is lost or interfered with in the SE process, which limits the application of enhanced speech. For instance, some SE algorithms aimed to improve human listening usually damage the ASR system. The objective of this dissertation is to develop SE algorithms that have the potential to capture various underlying speech representations (information) and improve the quality and intelligibility of noisy speech. This ...

Xiang, Yang — Aalborg University, Capturi A/S

Nonnegative Matrix and Tensor Factorizations: Models, Algorithms and Applications

In many fields, such as linear algebra, computational geometry, combinatorial optimization, analytical chemistry and geoscience, nonnegativity of the solution is required, which is either due to the fact that the data is physically nonnegative, or that the mathematical modeling of the problem requires nonnegativity. Image and audio processing are two examples for which the data are physically nonnegative. Probability and graph theory are examples for which the mathematical modeling requires nonnegativity. This thesis is about the nonnegative factorization of matrices and tensors: namely nonnegative matrix factorization (NMF) and nonnegative tensor factorization (NTF). NMF problems arise in a wide range of scenarios such as the aforementioned fields, and NTF problems arise as a generalization of NMF. As the title suggests, the contributions of this thesis are centered on NMF and NTF over three aspects: modeling, algorithms and applications. On the modeling ...

Ang, Man Shun — Université de Mons

Sound Source Separation in Monaural Music Signals

Sound source separation refers to the task of estimating the signals produced by individual sound sources from a complex acoustic mixture. It has several applications, since monophonic signals can be processed more efficiently and flexibly than polyphonic mixtures. This thesis deals with the separation of monaural, or, one-channel music recordings. We concentrate on separation methods, where the sources to be separated are not known beforehand. Instead, the separation is enabled by utilizing the common properties of real-world sound sources, which are their continuity, sparseness, and repetition in time and frequency, and their harmonic spectral structures. One of the separation approaches taken here use unsupervised learning and the other uses model-based inference based on sinusoidal modeling. Most of the existing unsupervised separation algorithms are based on a linear instantaneous signal model, where each frame of the input mixture signal is modeled ...

Virtanen, Tuomas — Tampere University of Technology

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven

Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University

Novel texture synthesis methods and their application to image prediction and image inpainting

This thesis presents novel exemplar-based texture synthesis methods for image prediction (i.e., predictive coding) and image inpainting problems. The main contributions of this study can also be seen as extensions to simple template matching, however the texture synthesis problem here is well-formulated in an optimization framework with different constraints. The image prediction problem has first been put into sparse representations framework by approximating the template with a sparsity constraint. The proposed sparse prediction method with locally and adaptive dictionaries has been shown to give better performance when compared to static waveform (such as DCT) dictionaries, and also to the template matching method. The image prediction problem has later been placed into an online dictionary learning framework by adapting conventional dictionary learning approaches for image prediction. The experimental observations show a better performance when compared to H.264/AVC intra and sparse prediction. ...

Turkan, Mehmet — INRIA-Rennes, France

Gaussian Process Modelling for Audio Signals

Audio signals are characterised and perceived based on how their spectral make-up changes with time. Uncovering the behaviour of latent spectral components is at the heart of many real-world applications involving sound, but is a highly ill-posed task given the infinite number of ways any signal can be decomposed. This motivates the use of prior knowledge and a probabilistic modelling paradigm that can characterise uncertainty. This thesis studies the application of Gaussian processes to audio, which offer a principled non-parametric way to specify probability distributions over functions whilst also encoding prior knowledge. Along the way we consider what prior knowledge we have about sound, the way it behaves, and the way it is perceived, and write down these assumptions in the form of probabilistic models. We show how Bayesian time-frequency analysis can be reformulated as a spectral mixture Gaussian process, ...

William Wilkinson — Queen Mary University of London

Group-Sparse Regression - With Applications in Spectral Analysis and Audio Signal Processing

This doctorate thesis focuses on sparse regression, a statistical modeling tool for selecting valuable predictors in underdetermined linear models. By imposing different constraints on the structure of the variable vector in the regression problem, one obtains estimates which have sparse supports, i.e., where only a few of the elements in the response variable have non-zero values. The thesis collects six papers which, to a varying extent, deals with the applications, implementations, modifications, translations, and other analysis of such problems. Sparse regression is often used to approximate additive models with intricate, non-linear, non-smooth or otherwise problematic functions, by creating an underdetermined model consisting of candidate values for these functions, and linear response variables which selects among the candidates. Sparse regression is therefore a widely used tool in applications such as, e.g., image processing, audio processing, seismological and biomedical modeling, but is ...

Kronvall, Ted — Lund University

Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi

Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify diﬀerent physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identiﬁcation. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we ﬁrst convert variable-duration speech signals into ﬁxed-dimensional vectors suitable for classiﬁcation/regression algorithms. This is performed by ﬁtting a probability density function to acoustic ...

Bahari, Mohamad Hasan — KU Leuven

Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse

Signal and Image Processing Algorithms Using Interval Convex Programming and Sparsity

In this thesis, signal and image processing algorithms based on sparsity and interval convex programming are developed for inverse problems. Inverse signal processing problems are solved by minimizing the ℓ1 norm or the Total Variation (TV) based cost functions in the literature. A modiﬁed entropy functional approximating the absolute value function is deﬁned. This functional is also used to approximate the ℓ1 norm, which is the most widely used cost function in sparse signal processing problems. The modiﬁed entropy functional is continuously diﬀerentiable, and convex. As a result, it is possible to develop iterative, globally convergent algorithms for compressive sensing, denoising and restoration problems using the modiﬁed entropy functional. Iterative interval convex programming algorithms are constructed using Bregman’s D-Projection operator. In sparse signal processing, it is assumed that the signal can be represented using a sparse set of coeﬃcients in ...

Kose, Kivanc — Bilkent University

Speech Modeling and Robust Estimation for Diagnosis of Parkinson's Disease

According to the Parkinson’s Foundation, more than 10 million people world- wide suffer from Parkinson’s disease (PD). The common symptoms are tremor, muscle rigidity and slowness of movement. There is no cure available cur- rently, but clinical intervention can help alleviate the symptoms significantly. Recently, it has been found that PD can be detected and telemonitored by voice signals, such as sustained phonation /a/. However, the voiced-based PD detector suffers from severe performance degradation in adverse envi- ronments, such as noise, reverberation and nonlinear distortion, which are common in uncontrolled settings. In this thesis, we focus on deriving speech modeling and robust estima- tion algorithms capable of improving the PD detection accuracy in adverse environments. Robust estimation algorithms using parametric modeling of voice signals are proposed. We present both segment-wise and sample-wise robust pitch tracking algorithms using the harmonic model. ...

Shi, Liming — Aalborg University

Embedded Optimization Algorithms for Perceptual Enhancement of Audio Signals

This thesis investigates the design and evaluation of an embedded optimization framework for the perceptual enhancement of audio signals which are degraded by linear and/or nonlinear distortion. In general, audio signal enhancement has the goal to improve the perceived audio quality, speech intelligibility, or another desired perceptual attribute of the distorted audio signal by applying a real-time digital signal processing algorithm. In the designed embedded optimization framework, the audio signal enhancement problem under consideration is formulated and solved as a per-frame numerical optimization problem, allowing to compute the enhanced audio signal frame that is optimal according to a desired perceptual attribute. The first stage of the embedded optimization framework consists in the formulation of the per-frame optimization problem aimed at maximally enhancing the desired perceptual attribute, by explicitly incorporating a suitable model of human sound perception. The second stage of ...

Defraene, Bruno — KU Leuven

Speech Enhancement Using Nonnegative Matrix Factorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively, supervised approaches, where the noise type is known in advance, lead to higher-quality enhanced speech signals. This dissertation proposes supervised and unsupervised single-channel noise reduction algorithms. We consider two classes of methods for this purpose: approaches based on nonnegative matrix factorization (NMF) and methods based on hidden Markov models (HMM). The contributions of this dissertation can be divided into three main (overlapping) parts. First, we propose NMF-based enhancement approaches that use temporal dependencies of the speech signals. In a standard NMF, the important temporal ...

Mohammadiha, Nasser — KTH Royal Institute of Technology

The current layout is optimized for **mobile
phones**. Page previews, thumbnails, and full abstracts
will remain hidden until the browser window grows in width.

The current layout is optimized for **tablet
devices**. Page previews and some thumbnails will remain
hidden until the browser window grows in width.