Time-domain music source separation for choirs and ensembles

Music source separation is the task of separating musical sources from an audio mixture. It has various direct applications including automatic karaoke generation, enhancing musical recordings, and 3D-audio upmixing; but also has implications for other downstream music information retrieval tasks such as multi-instrument transcription. However, the majority of research has focused on fixed stem separation of vocals, drums, and bass stems. While such models have highlighted capabilities of source separation using deep learning, their implications are limited to very few use cases. Such models are unable to separate most other instruments due to insufficient training data. Moreover, class-based separation inherently limits the applicability of such models to be unable to separate monotimbral mixtures. This thesis focuses on separating musical sources without requiring timbral distinction among the sources. Preliminary attempts focus on the separation of vocal harmonies from choral ensembles using ...

Sarkar, Saurjya — Queen Mary University of London


Deep Learning for Audio Effects Modeling

Audio effects modeling is the process of emulating an audio effect unit and seeks to recreate the sound, behaviour and main perceptual features of an analog reference device. Audio effect units are analog or digital signal processing systems that transform certain characteristics of the sound source. These transformations can be linear or nonlinear, time-invariant or time-varying and with short-term and long-term memory. Most typical audio effect transformations are based on dynamics, such as compression; tone such as distortion; frequency such as equalization; and time such as artificial reverberation or modulation based audio effects. The digital simulation of these audio processors is normally done by designing mathematical models of these systems. This is often difficult because it seeks to accurately model all components within the effect unit, which usually contains mechanical elements together with nonlinear and time-varying analog electronics. Most existing ...

Martínez Ramírez, Marco A — Queen Mary University of London


Machine Learning For Data-Driven Signal Separation and Interference Mitigation in Radio-Frequency Communications

Single-channel source separation for radio-frequency (RF) systems is a challenging problem relevant to key applications, including wireless communications, radar, and spectrum monitoring. This thesis addresses the challenge by focusing on data-driven approaches for source separation, leveraging datasets of sample realizations when source models are not explicitly provided. To this end, deep learning techniques are employed as function approximations for source separation, with models trained using available data. Two problem abstractions are studied as benchmarks for our proposed deep-learning approaches. Through a simplified problem involving Orthogonal Frequency Division Multiplexing (OFDM), we reveal the limitations of existing deep learning solutions and suggest modifications that account for the signal modality for improved performance. Further, we study the impact of time shifts on the formulation of an optimal estimator for cyclostationary Gaussian time series, serving as a performance lower bound for evaluating data-driven methods. ...

Lee, Cheng Feng Gary — Massachusetts Institute of Technology


From Blind to Semi-Blind Acoustic Source Separation based on Independent Component Analysis

Typical acoustic scenes consist of multiple superimposed sources, where some of them represent desired signals, but often many of them are undesired sources, e.g., interferers or noise. Hence, source separation and extraction, i.e., the estimation of the desired source signals based on observed mixtures, is one of the central problems in audio signal processing. A promising class of approaches to address such problems is based on Independent Component Analysis (ICA), an unsupervised machine learning technique. These methods enjoyed a lot of attention from the research community due to the small number of assumptions that have to be made about the considered problem. Furthermore, the resulting generalization ability to unseen acoustic conditions, their mathematical rigor and the simplicity of resulting algorithms have been appreciated by many researchers working in audio signal processing. However, knowledge about the acoustic scenario is often available ...

Brendel, Andreas — Friedrich-Alexander-Universität Erlangen-Nürnberg


Good Features to Correlate for Visual Tracking

Estimating object motion is one of the key components of video processing and the first step in applications which require video representation. Visual object tracking is one way of extracting this component, and it is one of the major problems in the field of computer vision. Numerous discriminative and generative machine learning approaches have been employed to solve this problem. Recently, correlation filter based (CFB) approaches have been popular due to their computational efficiency and notable performances on benchmark datasets. The ultimate goal of CFB approaches is to find a filter (i.e., template) which can produce high correlation outputs around the actual object location and low correlation outputs around the locations that are far from the object. Nevertheless, CFB visual tracking methods suffer from many challenges, such as occlusion, abrupt appearance changes, fast motion and object deformation. The main reasons ...

Gundogdu, Erhan — Middle East Technical University


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University


Deep Learning for Event Detection, Sequence Labelling and Similarity Estimation in Music Signals

When listening to music, some humans can easily recognize which instruments play at what time or when a new musical segment starts, but cannot describe exactly how they do this. To automatically describe particular aspects of a music piece – be it for an academic interest in emulating human perception, or for practical applications –, we can thus not directly replicate the steps taken by a human. We can, however, exploit that humans can easily annotate examples, and optimize a generic function to reproduce these annotations. In this thesis, I explore solving different music perception tasks with deep learning, a recent branch of machine learning that optimizes functions of many stacked nonlinear operations – referred to as deep neural networks – and promises to obtain better results or require less domain knowledge than more traditional techniques. In particular, I employ ...

Schlüter, Jan — Department of Computational Perception, Johannes Kepler University Linz


Music Language Models for Automatic Music Transcription

Much like natural language, music is highly structured, with strong priors on the likelihood of note sequences. In automatic speech recognition (ASR), these priors are called language models, which are used in addition to acoustic models and participate greatly to the success of today's systems. However, in Automatic Music Transcription (AMT), ASR's musical equivalent, Music Language Models (MLMs) are rarely used. AMT can be defined as the process of extracting a symbolic representation from an audio signal, describing which notes were played at what time. In this thesis, we investigate the design of MLMs using recurrent neural networks (RNNs) and their use for AMT. We first look into MLM performance on a polyphonic prediction task. We observe that using musically-relevant timesteps results in desirable MLM behaviour, which is not reflected in usual evaluation metrics. We compare our model against benchmark ...

Ycart, Adrien — Queen Mary University of London


Deep learning for semantic description of visual human traits

The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...

Antipov, Grigory — Télécom ParisTech (Eurecom)


Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions

Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...

Dietzen, Thomas — KU Leuven


A COMPARISON OF DIFFERENT APPROACHES TO TARGET DIFFERENTIATION WITH SONAR

This study compares the performances of different classification schemes and fusion techniques for target differentiation and localization of commonly encountered features in indoor robot environments using sonar sensing. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map-building, navigation, obstacle avoidance, and target tracking. The classification schemes employed include the target differentiation algorithm developed by Ayrulu and Barshan, statistical pattern recognition techniques, fuzzy c-means clustering algorithm, and artificial neural networks. The fusion techniques used are Dempster-Shafer evidential reasoning and different voting schemes. To solve the consistency problem arising in simple majority voting, different voting schemes including preference ordering and reliability measures are proposed and verified experimentally. To improve the performance of neural network classifiers, different input signal representations, two different training algorithms, and ...

Ayrulu-Erdem, Birsel — Bilkent University


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


Some Contributions to Machine Learning-based System Identification and Speech Enhancement for Nonlinear Acoustic Echo Control

Given the widespread use of miniaturized audio interfaces, echo control systems are faced with increasing challenges to address a large variety of acoustic conditions observed by such interfaces. This motivates the use of sophisticated machine learning-based techniques to overcome the limitations of conventional methods. The contributions in this thesis can be outlined by decomposing the task of nonlinear acoustic echo control into two subtasks: Nonlinear Acoustic Echo Cancellation (NAEC) and Acoustic Echo Suppression (AES). In particular, by formulating the single-channel NAEC model-adaptation task as a Bayesian recursive filtering problem, an evolutionary resampling strategy for particle filtering is proposed. The resulting Elitist Resampling Particle Filter (ERPF) is shown experimentally to be an efficient and high-performing approach that can be extended to address challenging conditions such as non-stationary interferers. The fundamental problem of nonlinear model design is addressed by proposing a novel ...

Halimeh, Mhd Modar — Friedrich-Alexander-Universität Erlangen-Nürnberg

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.