Three dimensional shape modeling: segmentation, reconstruction and registration

Accounting for uncertainty in three-dimensional (3D) shapes is important in a large number of scientific and engineering areas, such as biometrics, biomedical imaging, and data mining. It is well known that 3D polar shaped objects can be represented by Fourier descriptors such as spherical harmonics and double Fourier series. However, the statistics of these spectral shape models have not been widely explored. This thesis studies several areas involved in 3D shape modeling, including random field models for statistical shape modeling, optimal shape filtering, parametric active contours for object segmentation and surface reconstruction. It also investigates multi-modal image registration with respect to tumor activity quantification. Spherical harmonic expansions over the unit sphere not only provide a low dimensional polarimetric parameterization of stochastic shape, but also correspond to the Karhunen-Lo´eve (K-L) expansion of any isotropic random field on the unit sphere. Spherical ...

Li, Jia — University of Michigan


Direction Finding In The Presence of Array Imperfections, Model Mismatches and Multipath

In direction finding (DF) applications, there are several factors affecting the estimation accuracy of the direction-of-arrivals (DOA) of unknown source locations. The major distortions in the estimation process are due to the array imperfections, model mismatches and multipath. The array imperfections usually exist in practical applications due to the nonidealities in the antenna array such as mutual coupling (MC) and gain/phase uncertainties. The model mismatches usually occur when the model of the received signal differs from the signal model used in the processing stage of the DF system. Another distortion is due to multipath signals. In the multipath scenario, the antenna array receives the transmitted signal from more than one path with different directions and the array covariance matrix is rank-deficient. In this thesis, three new methods are proposed for the problems in DF applications in the presence of array ...

Elbir, Ahmet M. — Middle East Technical Univresity


On Bayesian Methods for Black-Box Optimization: Efficiency, Adaptation and Reliability

Recent advances in many fields ranging from engineering to natural science, require increasingly complicated optimization tasks in the experiment design, for which the target objectives are generally in the form of black-box functions that are expensive to evaluate. In a common formulation of this problem, a designer is expected to solve the black-box optimization tasks via sequentially attempting candidate solutions and receiving feedback from the system. This thesis considers Bayesian optimization (BO) as the black-box optimization framework, and investigates the enhancements on BO from the aspects of efficiency, adaptation and reliability. Generally, BO consists of a surrogate model for providing probabilistic inference and an acquisition function which leverages the probabilistic inference for selecting the next candidate solution. Gaussian process (GP) is a prominent non-parametric surrogate model, and the quality of its inference is a critical factor on the optimality performance ...

Zhang, Yunchuan — King's College London


Novel Methods in H.264/AVC (Inter Prediction, Data Hiding, Bit Rate Transcoding)

H.264 Advanced Video Coding has become the dominant video coding standard in the market, within a few years after the first version of the standard was completed by the ISO/IEC MPEG and the ITU-T VCEG groups in May 2003. That happened mainly due to the great coding efficiency of H.264. Compared to MPEG-2, the previous dominant standard, the H.264 compression ratio is about twice as higher for the same video quality. That makes H.264 ideal for a numerous of applications, such as video broadcasting, video streaming and video conferencing. However, the H.264 efficiency is achieved at the expense of the codec¢s complexity. H.264 complexity is about four times that of MPEG-2. As a consequence, many video coding issues, which have been addressed in previous standards, need to be re-considered. For example the H.264 encoding of a video in real time ...

Kapotas, Spyridon — Hellenic Open University


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Online Machine Learning for Graph Topology Identi fication from Multiple Time Series

High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identifi ed structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series influence each other. The goal of this dissertation pertains to study the problem of sparse topology identi fication under various settings. Topology identi fication from time series is a challenging task. The first major challenge in topology identi fication is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving ...

Zaman, Bakht — University of Agder, Norway


Development of Fast Machine Learning Algorithms for False Discovery Rate Control in Large-Scale High-Dimensional Data

This dissertation develops false discovery rate (FDR) controlling machine learning algorithms for large-scale high-dimensional data. Ensuring the reproducibility of discoveries based on high-dimensional data is pivotal in numerous applications. The developed algorithms perform fast variable selection tasks in large-scale high-dimensional settings where the number of variables may be much larger than the number of samples. This includes large-scale data with up to millions of variables such as genome-wide association studies (GWAS). Theoretical finite sample FDR-control guarantees based on martingale theory have been established proving the trustworthiness of the developed methods. The practical open-source R software packages TRexSelector and tlars, which implement the proposed algorithms, have been published on the Comprehensive R Archive Network (CRAN). Extensive numerical experiments and real-world problems in biomedical and financial engineering demonstrate the performance in challenging use-cases. The first three main parts of this dissertation present ...

Machkour, Jasin — Technische Universität Darmstadt


Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


An iterative, residual-based approach to unsupervised musical source separation in single-channel mixtures

This thesis concentrates on a major problem within audio signal processing, the separation of source signals from musical mixtures when only a single mixture channel is available. Source separation is the process by which signals that correspond to distinct sources are identified in a signal mixture and extracted from it. Producing multiple entities from a single one is an extremely underdetermined task, so additional prior information can assist in setting appropriate constraints on the solution set. The approach proposed uses prior information such that: (1) it can potentially be applied successfully to a large variety of musical mixtures, and (2) it requires minimal user intervention and no prior learning/training procedures (i.e., it is an unsupervised process). This system can be useful for applications such as remixing, creative effects, restoration and for archiving musical material for internet delivery, amongst others. Here, ...

Siamantas, Georgios — University of York


Counting sequences, Gray codes and lexicodes

A counting sequence of length n is a list of all 2^n binary n-tuples (binary codewords of length n). The number of bit positions where two codewords differ is called the Hamming distance of these two codewords. The average Hamming distance of a counting sequence of length n is defined as the average Hamming distance between the 2^n pairs of successive codewords, including the pair of the last and the first codeword. A counting sequence of length n which has average Hamming distance equal to n-1/2 is called a maximum counting sequence. The number of bit changes in bit position i, in a counting sequence of length n is called the transition count of bit position i. If a counting sequence of length n has the property that the difference between any two bit positions is at most 2, the ...

Suparta, I Nengah — Delft University of Technology


Dynamics of Brain Function in Preterm-Born Young Adolescents

Preterm birth is a major risk factor for neurodevelopment impairments often only appearing later in life. The brain is still at a high rate of development during adolescence, making this a promising window for intervention. It is thus crucial to understand the mechanisms of altered brain function in this population. The aim of this thesis is to investigate how the brain dynamically reconfigures its own organisation over time in preterm-born young adolescents. Research to date has mainly focused on structural disturbances or in static features of brain function in this population. However, recent studies have shown that brain activity is highly dynamic, both spontaneously and during performance of a task, and that small disruptions in its complex architecture may interfere with normal behaviour and cognitive abilities. This thesis explores the dynamic nature of brain function in preterm-born adolescents in three ...

Freitas, Lorena G. A. — École Polytechnique Fédérale de Lausanne


Modelling context in automatic speech recognition

Speech is at the core of human communication. Speaking and listing comes so natural to us that we do not have to think about it at all. The underlying cognitive processes are very rapid and almost completely subconscious. It is hard, if not impossible not to understand speech. For computers on the other hand, recognising speech is a daunting task. It has to deal with a large number of different voices "influenced, among other things, by emotion, moods and fatigue" the acoustic properties of different environments, dialects, a huge vocabulary and an unlimited creativity of speakers to combine words and to break the rules of grammar. Almost all existing automatic speech recognisers use statistics over speech sounds "what is the probability that a piece of audio is an a-sound" and statistics over word combinations to deal with this complexity. The ...

Wiggers, Pascal — Delft University of Technology


Robust Network Topology Inference and Processing of Graph Signals

The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder ...

Rey, Samuel — King Juan Carlos University


Privacy Protecting Biometric Authentication Systems

As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing ...

Kholmatov, Alisher — Sabanci University


Analysis of Multipath Mitigation Techniques for Satellite-based Positioning Applications

Multipath remains a dominant source of ranging errors in any Global Navigation Satellite System (GNSS), such as the Global Positioning System (GPS) or the developing European satellite navigation system Galileo. Multipath is undesirable in the context of GNSS, since the reception of multipath can create significant distortion to the shape of the correlation function used in the time delay estimate of a Delay Locked Loop (DLL) of a navigation receiver, leading to an error in the receiver's position estimate. Therefore, in order to mitigate the impact of multipath on a navigation receiver, the multipath problem has been approached from several directions, including the development of novel signal processing techniques. Many of these techniques rely on modifying the tracking loop discriminator (i.e., the DLL and its enhanced variants) in order to make it resistant to multipath, but their performance in severe ...

Bhuiyan, Mohammad Zahidul Hasan — Tampere University of Technology

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.