Joint Source-Cryptographic-Channel Coding for Real-Time Secure Voice Communications on Voice Channels (2021)
Analog Joint Source Channel Coding for Wireless Communications
In 1948, the Shannon’s work titled ”A mathematical theory of communication” completely revolutionized the way to understand the problem of the reliable communications. He showed that any communications system is able to transmit with an arbitrarily low error probability as long as the transmission rate is kept below a certain limit. The separation between the source and channel coding was also shown as the optimal strategy to achieve the theoretical limits. Those ideas inspire the development of a whole digital communication theory focused on building more and more sophisticated coding schemes. It leads to most of communication systems were designed according to a digital approach and the separation principle from that moment, whereas other alternatives were set aside. However, in the last years, communication systems based on a jointly optimization of the source and channel encoder has aroused the interest ...
Fresnedo Arias, Óscar — University of A Coruña
Digital design and experimental validation of high-performance real-time OFDM systems
The goal of this Ph.D. dissertation is to address a number of challenges encountered in the digital baseband design of modern and future wireless communication systems. The fast and continuous evolution of wireless communications has been driven by the ambitious goal of providing ubiquitous services that could guarantee high throughput, reliability of the communication link and satisfy the increasing demand for efficient re-utilization of the heavily populated wireless spectrum. To cope with these ever-growing performance requirements, researchers around the world have introduced sophisticated broadband physical (PHY)-layer communication schemes able to accommodate higher bandwidth, which indicatively include multiple antennas at the transmitter and receiver and are capable of delivering improved spectral efficiency by applying interference management policies. The merging of Multiple Input Multiple Output (MIMO) schemes with the Orthogonal Frequency Division Multiplexing (OFDM) offers a flexible signal processing substrate to implement ...
Font-Bach, Oriol — Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Polar Coding for the Wiretap Broadcast Channel
In the next era of communications, where heterogeneous, asynchronous and ultra-low latency networks are drawn on the horizon, classical cryptography might be inadequate due to the excessive cost of maintaining a public-key infrastructure and the high computational capacity required in the devices. Moreover, it is becoming increasingly difficult to guarantee that the computational capacity of adversaries would not be able to break the cryptograms. Consequently, information-theoretic security, and particularly its application to keyless secrecy communication, might play an important role in the future development of these systems. The notion of secrecy in this case does not rely on any assumption of the computational power of eavesdroppers, and is based instead on guaranteeing statistical independence between the information message and the observed cryptogram. This is possible by constructing channel codes that exploit the noisy behavior of the channels involved in the ...
del Olmo Alòs, Jaume — Universitat Politècnica de Catalunya
Privacy Protecting Biometric Authentication Systems
As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing ...
Kholmatov, Alisher — Sabanci University
Steganoflage: A New Image Steganography Algorithm
Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio and video files. It comes under the assumption that if the feature is visible, the point of attack is evident, thus the goal here is always to conceal the very existence of the embedded data. It does not replace cryptography but rather boosts the security using its obscurity features. Steganography has various useful applications. However, like any other science it can be used for ill intentions. It has been propelled to the forefront of current security techniques by the remarkable growth in computational power, the increase in security awareness, e.g., individuals, groups, agencies, government and through intellectual pursuit. Steganography’s ultimate objectives, which are undetectability, robustness, resistance to various image processing methods and compression, and capacity of the hidden data, are the main factors ...
Cheddad Abbas — University of Ulster
Making music through real-time voice timbre analysis: machine learning and timbral control
People can achieve rich musical expression through vocal sound -- see for example human beatboxing, which achieves a wide timbral variety through a range of extended techniques. Yet the vocal modality is under-exploited as a controller for music systems. If we can analyse a vocal performance suitably in real time, then this information could be used to create voice-based interfaces with the potential for intuitive and fulfilling levels of expressive control. Conversely, many modern techniques for music synthesis do not imply any particular interface. Should a given parameter be controlled via a MIDI keyboard, or a slider/fader, or a rotary dial? Automatic vocal analysis could provide a fruitful basis for expressive interfaces to such electronic musical instruments. The principal questions in applying vocal-based control are how to extract musically meaningful information from the voice signal in real time, and how ...
Stowell, Dan — Queen Mary University of London
OFDM Air-Interface Design for Multimedia Communications
The aim of this dissertation is the investigation of the key issues encountered in the development of wideband radio air-interfaces. Orthogonal frequency-division multiplexing (OFDM) is considered as the enabling technology for transmitting data at extremely high rates over time-dispersive radio channels. OFDM is a transmission scheme, which splits up the data stream, sending the data symbols simultaneously at a drastically reduced symbol rate over a set of parallel sub-carriers. The first part of this thesis deals with the modeling of the time-dispersive and frequency-selective radio channel, utilizing second order Gaussian stochastic processes. A novel channel measurement technique is developed, in which the RMS delay spread of the channel is estimated from the level-crossing rate of the frequency-selective channel transfer function. This method enables the empirical channel characterization utilizing simplified non-coherent measurements of the received power versus frequency. Air-interface and multiple ...
Witrisal, Klaus — Delft University of Technology
Matrix Designs and Methods for Secure and Efficient Compressed Sensing
The idea of balancing the resources spent in the acquisition and encoding of natural signals strictly to their intrinsic information content has interested nearly a decade of research under the name of compressed sensing. In this doctoral dissertation we develop some extensions and improvements upon this technique’s foundations, by modifying the random sensing matrices on which the signals of interest are projected to achieve different objectives. Firstly, we propose two methods for the adaptation of sensing matrix ensembles to the second-order moments of natural signals. These techniques leverage the maximisation of different proxies for the quantity of information acquired by compressed sensing, and are efficiently applied in the encoding of natural signals with minimum complexity digital hardware. Secondly, we focus on the possibility of using compressed sensing as a method to provide a partial, yet cryptanalysis-resistant form of encryption. In ...
Cambareri, Valerio — University of Bologna
Error Resilient Transmission of Video Streaming over Wireless Mobile Networks,
The third generation of mobile systems brought higher data rates that allow for provisioning of multimedia services containing also video. The real-time services like video call, conferencing, and streaming are particularly challenging for mobile communication systems due to the wireless channel quality variations. The mechanism for video compression utilizes a hybrid of temporal and spatial prediction, transform coding and variable length coding. The combination of these methods provides high compression gain, but at the same time makes the encoded stream more prone to errors. In this thesis, techniques for error resilient transmission of video streaming over wireless mobile networks are investigated. Focus is given to the recent H.264/AVC standard, although the ma jority of the proposed method apply to other video coding standards, too. The first part is dedicated to exploiting the residual redundancy of the received video stream at ...
Nemethova, O. — Vienna University of Technology
In this thesis, we investigate the following three fields on multi-input multi-output (MIMO) systems with limited feedback. End-to-end distortion: The first part of the thesis presents the joint impact of antenna numbers, source-to-channel bandwidth ratio, spatial correlation and time diversity on the optimum expected end-to-end distortion in an outage-free MIMO system. In particular, based on the analytical expression for any signal-to-noise ratio (SNR), the closed-form expression of the asymptotic optimum expected end-to-end distortion at a high SNR is derived, comprised of the optimum distortion exponent and the optimum distortion factor. The simulation results illustrate that, at a practical high SNR, the analysis on the impacts of the optimum distortion exponent and the optimum distortion factor explains the behavior of the optimum expected end-to-end distortion. The results in this part could be the performance objectives for analog-source transmission systems as well ...
Chen, Jinhui — TELECOM ParisTech
Acoustic sensor network geometry calibration and applications
In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...
Plinge, Axel — TU Dortmund University
Accounting for channel constraints in joint source-channel video coding schemes
SoftCast based Linear Video Coding (LVC) schemes have been emerged in the last decade as a quasi analog joint-source-channel alternative to classical video coding schemes. Theoretical analyses have shown that analog coding is better than digital coding in a multicast scenario when the channel signal-to-noise ratios (C-SNR) differ among receivers. LVC schemes provide in such context a decoded video quality at different receivers proportional to their C-SNR. This thesis considers first the channel precoding and decoding matrix design problem for LVC schemes under a per-subchannel power constraint. Such constraint is found, e.g., on Power Line Telecommunication (PLT) channels and is similar to per-antenna power constraints in multi-antenna transmission system. An optimal design approach is proposed, involving a multi-level water filling algorithm and the solution of a structured Hermitian Inverse Eigenvalue problem. Three lower-complexity alternative suboptimal algorithms are also proposed. Extensive ...
Zheng, Shuo — TélécomParis
Speech Watermarking and Air Traffic Control
Air traffic control (ATC) voice radio communication between aircraft pilots and controllers is subject to technical and functional constraints owing to the legacy radio system currently in use worldwide. This thesis investigates the embedding of digital side information, so called watermarks, into speech signals. Applied to the ATC voice radio, a watermarking system could overcome existing limitations, and ultimately increase safety, security and efficiency in ATC. In contrast to conventional watermarking methods, this field of application allows embedding of the data in perceptually irrelevant signal components. We show that the resulting theoretical watermark capacity far exceeds the capacity of conventional watermarking channels. Based on this finding, we present a general purpose blind speech watermarking algorithm that embeds watermark data in the phase of non-voiced speech segments by replacing the excitation signal of an autoregressive signal representation. Our implementation embeds the ...
Hofbauer, Konrad — Graz University
Scalable Single and Multiple Description Scalar Quantization
Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...
Satti, Shahid Mahmood — Vrije Universiteit Brussel
Improving Security and Privacy in Biometric Systems
The achievement of perfect security is out of the question. Even if we are not yet aware of them, every security aimed technology has weaknesses which attackers can exploit in order to circumvent the system. We should hence direct our efforts to the development of applications whose security level make it infeasible for computationally bound attackers to break the systems. This Thesis is focused on improving the security and privacy provided by biometric systems. With the increased need for reliable and automatic identity verification, biometrics have emerged in the last decades as a pushing alternative to traditional authentication methods. Certainly, biometrics are very attractive and useful for the general public: forget about PINs and passwords, you are your own key. However, the wide deployment of biometric recognition systems at both large-scale applications (e.g., border management at European level or national ...
Gomez-Barrero, Marta — Universidad Autonoma de Madrid
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.