Design of unbiased state estimators for WSNs with consensus on measurements and estimates and improved robustness (2019)
Modelling of the respiratory parameters in non-invasive ventilation
In this study, the respiratory system are modelled by three linear and one non-linear lumped parameter respiratory model, the equations of the models are driven and the parameters are estimated by using statistical signal processing methods. Linear RIC, Viscoelastic and Mead models and proposed basic non-linear RC model are used to resemble the respiratory system of the patient with Chronic Obstructive Pulmonary Disease (COPD) under non-invasive ventilation. Statistical signal processing methods such as Minimum Variance Unbiased Estimation (MVUE), Maximum Likelihood Estimation (MLE), Kalman Filter (KF), Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) are very powerful methods to estimate the parameters of the systems embedded in the unknown noise. In the first part of this thesis, artificial respiratory signals (airway flow and airway pressure) are used for the performance measurement criteria. Posterior Cramer Rao Lower Bound (PCRLB) is computed ...
Saatci, Esra — Istanbul University
Signal processing algorithms for wireless acoustic sensor networks
Recent academic developments have initiated a paradigm shift in the way spatial sensor data can be acquired. Traditional localized and regularly arranged sensor arrays are replaced by sensor nodes that are randomly distributed over the entire spatial field, and which communicate with each other or with a master node through wireless communication links. Together, these nodes form a so-called ‘wireless sensor network’ (WSN). Each node of a WSN has a local sensor array and a signal processing unit to perform computations on the acquired data. The advantage of WSNs compared to traditional (wired) sensor arrays, is that many more sensors can be used that physically cover the full spatial field, which typically yields more variety (and thus more information) in the signals. It is likely that future data acquisition, control and physical monitoring, will heavily rely on this type of ...
Bertrand, Alexander — Katholieke Universiteit Leuven
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph — KU Leuven
Distributed Signal Processing Algorithms for Acoustic Sensor Networks
In recent years, there has been a proliferation of wireless devices for individual use to the point of being ubiquitous. Recent trends have been incorporating many of these devices (or nodes) together, which acquire signals and work in unison over wireless channels, in order to accomplish a predefined task. This type of cooperative sensing and communication between devices form the basis of a so-called wireless sensor network (WSN). Due to the ever increasing processing power of these nodes, WSNs are being assigned more complicated and computationally demanding tasks. Recent research has started to exploit this increased processing power in order for the WSNs to perform tasks pertaining to audio signal acquisition and processing forming so-called wireless acoustic sensor networks (WASNs). Audio signal processing poses new and unique problems when compared to traditional sensing applications as the signals observed often have ...
Szurley, Joseph C. — KU Leuven
Bayesian Signal Processing Techniques for GNSS Receivers: from multipath mitigation to positioning
This dissertation deals with the design of satellite-based navigation receivers. The term Global Navigation Satellite Systems (GNSS) refers to those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the american GPS is probably the most popular, the european contribution (Galileo) will be operative soon. Other global and regional systems exist, all with the same objective: aid user's positioning. Initially, the thesis provides the state-of-the-art in GNSS: navigation signals structure and receiver architecture. The design of a GNSS receiver consists of a number of functional blocks. From the antenna to the fi nal position calculation, the design poses challenges in many research areas. Although the Radio Frequency chain of the receiver is commented in the thesis, the main objective of the dissertation is on the signal processing algorithms applied after signal digitation. These ...
Closas, Pau — Universitat Politecnica de Catalunya
Effects of Model Misspecification and Uncertainty on the Performance of Estimators
System designers across all disciplines of technology face the need to develop machines capable of independently processing and analyzing data and predicting future data. This is the fundamental problem of interest in “estimation theory,” wherein probabilistic analyses are used to isolate relationships between variables, and in “statistical inference,” wherein those variables are used to make inferences about real-world quantities. In practice, all estimators are designed based on limited statistical generalizations about the behavior of the observed and latent variables of interest; however, these models are rarely fully representative of reality. In such cases, there exists a “model misspecification,” and the resulting estimators will produce results that differ from those of the properly specified estimators. Evaluating the performance of a given estimator may sometimes be done by direct comparison of estimator outputs to known ground truth. However, in many cases, there ...
LaMountain, Gerald — Northeastern University
Acoustic sensor network geometry calibration and applications
In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...
Plinge, Axel — TU Dortmund University
Signal Strength Based Localization and Path-loss Exponent Self-Estimation in Wireless Networks
Wireless communications and networking are gradually permeating our life and substantially influencing every corner of this world. Wireless devices, particularly those of small size, will take part in this trend more widely, efficiently, seamlessly and smartly. Techniques requiring only limited resources, especially in terms of hardware, are becoming more important and urgently needed. That is why we focus this thesis around analyzing wireless communications and networking based on signal strength (SS) measurements, since these are easy and convenient to gather. SS-based techniques can be incorporated into any device that is equipped with a wireless chip. More specifically, this thesis studies \textbf{SS-based localization} and \textbf{path-loss exponent (PLE) self-estimation}. Although these two research lines might seem unrelated, they are actually marching towards the same goal. The former can easily enable a very simple wireless chip to infer its location. But to solve ...
Hu, Yongchang — Delft University of Technology
Sensing physical fields: Inverse problems for the diffusion equation and beyond
Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected remains an open area of research. This work, therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing, it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile ...
Murray-Bruce, John — Imperial College London
This dissertation deals with the distributed processing techniques for parameter estimation and efficient data-gathering in wireless communication and sensor networks. The estimation problem consists in inferring a set of parameters from temporal and spatial noisy observations collected by different nodes that monitor an area or field. The objective is to derive an estimate that is as accurate as the one that would be obtained if each node had access to the information across the entire network. With the aim of enabling an energy aware and low-complexity distributed implementation of the estimation task, several useful optimization techniques that generally yield linear estimators were derived in the literature. Up to now, most of the works considered that the nodes are interested in estimating the same vector of global parameters. This scenario can be viewed as a special case of a more general ...
Bogdanovic, Nikola — University of Patras
Exploiting Sparsity for Efficient Compression and Analysis of ECG and Fetal-ECG Signals
Over the last decade there has been an increasing interest in solutions for the continuous monitoring of health status with wireless, and in particular, wearable devices that provide remote analysis of physiological data. The use of wireless technologies have introduced new problems such as the transmission of a huge amount of data within the constraint of limited battery life devices. The design of an accurate and energy efficient telemonitoring system can be achieved by reducing the amount of data that should be transmitted, which is still a challenging task on devices with both computational and energy constraints. Furthermore, it is not sufficient merely to collect and transmit data, and algorithms that provide real-time analysis are needed. In this thesis, we address the problems of compression and analysis of physiological data using the emerging frameworks of Compressive Sensing (CS) and sparse ...
Da Poian, Giulia — University of Udine
In recent years, advances in signal processing have led the wireless sensor networks to be capable of mobility. The signal processing in a wireless sensor network differs from that of a traditional wireless network mainly in two important aspects. Unlike traditional wireless networks, in a sensor network the signal processing is performed in a fully distributed manner as the sensor measurements in a distributed fashion across the network collected. Additionally, due to the limited onboard resource of a sensor network it is essential to develop energy and bandwidth efficient signal processing algorithms. The thesis is devoted to discuss the state of the arte of algorithms commonly known as tracking algorithms. Although tracking algorithms have only been attracting research and development attention recently, already a wide literature and great variety of proposed approaches regarding the topic exist. The dissertation focus on ...
Arienzo, Loredana — University of Salerno
Robust Signal Processing in Distributed Sensor Networks
Statistical robustness and collaborative inference in a distributed sensor network are two challenging requirements posed on many modern signal processing applications. This dissertation aims at solving these tasks jointly by providing generic algorithms that are applicable to a wide variety of real-world problems. The first part of the thesis is concerned with sequential detection---a branch of detection theory that is focused on decision-making based on as few measurements as possible. After reviewing some fundamental concepts of statistical hypothesis testing, a general formulation of the Consensus+Innovations Sequential Probability Ratio Test for sequential binary hypothesis testing in distributed networks is derived. In a next step, multiple robust versions of the algorithm based on two different robustification paradigms are developed. The functionality of the proposed detectors is verified in simulations, and their performance is examined under different network conditions and outlier concentrations. Subsequently, ...
Leonard, Mark Ryan — Technische Universität Darmstadt
High-Quality Vocoding Design with Signal Processing for Speech Synthesis and Voice Conversion
This Ph.D. thesis focuses on developing a system for high-quality speech synthesis and voice conversion. Vocoder-based speech analysis, manipulation, and synthesis plays a crucial role in various kinds of statistical parametric speech research. Although there are vocoding methods which yield close to natural synthesized speech, they are typically computationally expensive, and are thus not suitable for real-time implementation, especially in embedded environments. Therefore, there is a need for simple and computationally feasible digital signal processing algorithms for generating high-quality and natural-sounding synthesized speech. In this dissertation, I propose a solution to extract optimal acoustic features and a new waveform generator to achieve higher sound quality and conversion accuracy by applying advances in deep learning. The approach remains computationally efficient. This challenge resulted in five thesis groups, which are briefly summarized below. I introduce firstly a new method to shape the ...
Al-Radhi Mohammed Salah — Budapest University of Technology and Economics
Theoretical aspects and real issues in an integrated multiradar system
In the last few years Homeland Security (HS) has gained a considerable interest in the research community. From a scientific point of view, it is a difficult task to provide a definition of this research area and to exactly draw up its boundaries. In fact, when we talk about the security and the surveillance, several problems and aspects must be considered. In particular, the following factors play a crucial role and define the complexity level of the considered application field: the number of potential threats can be high and uncertain; the threat detection and identification can be made more complicated by the use of camouflaging techniques; the monitored area is typically wide and it requires a large and heterogeneous sensor network; the surveillance operation is strongly related to the operational scenario, so that it is not possible to define a ...
Fortunati Stefano — University of Pisa
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.