Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Informed spatial filters for speech enhancement

In modern devices which provide hands-free speech capturing functionality, such as hands-free communication kits and voice-controlled devices, the received speech signal at the microphones is corrupted by background noise, interfering speech signals, and room reverberation. In many practical situations, the microphones are not necessarily located near the desired source, and hence, the ratio of the desired speech power to the power of the background noise, the interfering speech, and the reverberation at the microphones can be very low, often around or even below 0 dB. In such situations, the comfort of human-to-human communication, as well as the accuracy of automatic speech recognisers for voice-controlled applications can be signi cantly degraded. Therefore, e ffective speech enhancement algorithms are required to process the microphone signals before transmitting them to the far-end side for communication, or before feeding them into a speech recognition ...

Taseska, Maja — Friedrich-Alexander Universität Erlangen-Nürnberg


Distributed Signal Processing Algorithms for Multi-Task Wireless Acoustic Sensor Networks

Recent technological advances in analogue and digital electronics as well as in hardware miniaturization have taken wireless sensing devices to another level by introducing low-power communication protocols, improved digital signal processing capabilities and compact sensors. When these devices perform a certain pre-defined signal processing task such as the estimation or detection of phenomena of interest, a cooperative scheme through wireless connections can significantly enhance the overall performance, especially in adverse conditions. The resulting network consisting of such connected devices (or nodes) is referred to as a wireless sensor network (WSN). In acoustical applications (e.g., speech enhancement) a variant of WSNs, called wireless acoustic sensor networks (WASNs) can be employed in which the sensing unit at each node consists of a single microphone or a microphone array. The nodes of such a WASN can then cooperate to perform a multi-channel acoustic ...

Hassani, Amin — KU Leuven


Dereverberation and noise reduction techniques based on acoustic multi-channel equalization

In many hands-free speech communication applications such as teleconferencing or voice-controlled applications, the recorded microphone signals do not only contain the desired speech signal, but also attenuated and delayed copies of the desired speech signal due to reverberation as well as additive background noise. Reverberation and background noise cause a signal degradation which can impair speech intelligibility and decrease the performance for many signal processing techniques. Acoustic multi-channel equalization techniques, which aim at inverting or reshaping the measured or estimated room impulse responses between the speech source and the microphone array, comprise an attractive approach to speech dereverberation since in theory perfect dereverberation can be achieved. However in practice, such techniques suffer from several drawbacks, such as uncontrolled perceptual effects, sensitivity to perturbations in the measured or estimated room impulse responses, and background noise amplification. The aim of this thesis ...

Kodrasi, Ina — University of Oldenburg


Adaptive filtering techniques for noise reduction and acoustic feedback cancellation in hearing aids

Understanding speech in noise and the occurrence of acoustic feedback belong to the major problems of current hearing aid users. Hence, an urgent demand exists for efficient and well-working digital signal processing algorithms that offer a solution to these issues. In this thesis we develop adaptive filtering techniques for noise reduction and acoustic feedback cancellation. Thanks to the availability of low power digital signal processors, these algorithms can be integrated in a hearing aid. Because of the ongoing miniaturization in the hearing aid industry and the growing tendency towards multi-microphone hearing aids, robustness against imperfections such as microphone mismatch, has become a major issue in the design of a noise reduction algorithm. In this thesis we propose multimicrophone noise reduction techniques that are based on multi-channel Wiener filtering (MWF). Theoretical and experimental analysis demonstrate that these MWF-based techniques are less ...

Spriet, Ann — Katholieke Universiteit Leuven


Multi-microphone speech enhancement: An integration of a priori and data-dependent spatial information

A speech signal captured by multiple microphones is often subject to a reduced intelligibility and quality due to the presence of noise and room acoustic interferences. Multi-microphone speech enhancement systems therefore aim at the suppression or cancellation of such undesired signals without substantial distortion of the speech signal. A fundamental aspect to the design of several multi-microphone speech enhancement systems is that of the spatial information which relates each microphone signal to the desired speech source. This spatial information is unknown in practice and has to be somehow estimated. Under certain conditions, however, the estimated spatial information can be inaccurate, which subsequently degrades the performance of a multi-microphone speech enhancement system. This doctoral dissertation is focused on the development and evaluation of acoustic signal processing algorithms in order to address this issue. Specifically, as opposed to conventional means of estimating ...

Ali, Randall — KU Leuven


Acoustic echo reduction for multiple loudspeakers and microphones: Complexity reduction and convergence enhancement

Modern devices such as mobile phones, tablets or smart speakers are commonly equipped with several loudspeakers and microphones. If, for instance, one employs such a device for hands-free communication applications, the signals that are reproduced by the loudspeakers are propagated through the room and are inevitably acquired by the microphones. If no processing is applied, the participants in the far-end room receive delayed reverberated replicas of their own voice, which strongly degrades both speech intelligibility and user comfort. In order to prevent that so-called acoustic echoes are transmitted back to the far-end room, acoustic echo cancelers are commonly employed. The latter make use of adaptive filtering techniques to identify the propagation paths between loudspeakers and microphones. The estimated propagation paths are then employed to compute acoustic echo estimates, which are finally subtracted from the signals acquired by the microphones. In ...

Luis Valero, Maria — International Audio Laboratories Erlangen


Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement

In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...

Jarrett, Daniel P. — Imperial College London


Flexible Multi-Microphone Acquisition and Processing of Spatial Sound Using Parametric Sound Field Representations

This thesis deals with the efficient and flexible acquisition and processing of spatial sound using multiple microphones. In spatial sound acquisition and processing, we use multiple microphones to capture the sound of multiple sources being simultaneously active at a rever- berant recording side and process the sound depending on the application at the application side. Typical applications include source extraction, immersive spatial sound reproduction, or speech enhancement. A flexible sound acquisition and processing means that we can capture the sound with almost arbitrary microphone configurations without constraining the application at the ap- plication side. This means that we can realize and adjust the different applications indepen- dently of the microphone configuration used at the recording side. For example in spatial sound reproduction, where we aim at reproducing the sound such that the listener perceives the same impression as if he ...

Thiergart, Oliver — Friedrich-Alexander-Universitat Erlangen-Nurnberg


Sparse Multi-Channel Linear Prediction for Blind Speech Dereverberation

In many speech communication applications, such as hands-free telephony and hearing aids, the microphones are located at a distance from the speaker. Therefore, in addition to the desired speech signal, the microphone signals typically contain undesired reverberation and noise, caused by acoustic reflections and undesired sound sources. Since these disturbances tend to degrade the quality of speech communication, decrease speech intelligibility and negatively affect speech recognition, efficient dereverberation and denoising methods are required. This thesis deals with blind dereverberation methods, not requiring any knowledge about the room impulse responses between the speaker and the microphones. More specifically, we propose a general framework for blind speech dereverberation based on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech signal in the time-frequency domain.

Jukić, Ante — University of Oldenburg


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Adaptive Algorithms for Intelligent Acoustic Interfaces

Modern speech communications are evolving towards a new direction which involves users in a more perceptive way. That is the immersive experience, which may be considered as the “last mile” problem of telecommunications. One of the main feature of immersive communications is the distant-talking, i.e. the hands-free (in the broad sense) speech communications without bodyworn or tethered microphones that takes place in a multisource environment where interfering signals may degrade the communication quality and the intelligibility of the desired speech source. In order to preserve speech quality intelligent acoustic interfaces may be used. An intelligent acoustic interface may comprise multiple microphones and loudspeakers and its peculiarity is to model the acoustic channel in order to adapt to user requirements and to environment conditions. This is the reason why intelligent acoustic interfaces are based on adaptive filtering algorithms. The acoustic path ...

Comminiello, Danilo — Sapienza University of Rome


Broadband adaptive beamforming with low complexity and frequency invariant response

This thesis proposes different methods to reduce the computational complexity as well as increasing the adaptation rate of adaptive broadband beamformers. This is performed exemplarily for the generalised sidelobe canceller (GSC) structure. The GSC is an alternative implementation of the linearly constrained minimum variance beamformer, which can utilise well-known adaptive filtering algorithms, such as the least mean square (LMS) or the recursive least squares (RLS) to perform unconstrained adaptive optimisation. A direct DFT implementation, by which broadband signals are decomposed into frequency bins and processed by independent narrowband beamforming algorithms, is thought to be computationally optimum. However, this setup fail to converge to the time domain minimum mean square error (MMSE) if signal components are not aligned to frequency bins, resulting in a large worst case error. To mitigate this problem of the so-called independent frequency bin (IFB) processor, overlap-save ...

Koh, Choo Leng — University of Southampton


Integrating monaural and binaural cues for sound localization and segregation in reverberant environments

The problem of segregating a sound source of interest from an acoustic background has been extensively studied due to applications in hearing prostheses, robust speech/speaker recognition and audio information retrieval. Computational auditory scene analysis (CASA) approaches the segregation problem by utilizing grouping cues involved in the perceptual organization of sound by human listeners. Binaural processing, where input signals resemble those that enter the two ears, is of particular interest in the CASA field. The dominant approach to binaural segregation has been to derive spatially selective filters in order to enhance the signal in a direction of interest. As such, the problems of sound localization and sound segregation are closely tied. While spatial filtering has been widely utilized, substantial performance degradation is incurred in reverberant environments and more fundamentally, segregation cannot be performed without sufficient spatial separation between sources. This dissertation ...

Woodruff, John — The Ohio State University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.