Audio-visual processing and content management techniques, for the study of (human) bioacoustics phenomena

The present doctoral thesis aims towards the development of new long-term, multi-channel, audio-visual processing techniques for the analysis of bioacoustics phenomena. The effort is focused on the study of the physiology of the gastrointestinal system, aiming at the support of medical research for the discovery of gastrointestinal motility patterns and the diagnosis of functional disorders. The term "processing" in this case is quite broad, incorporating the procedures of signal processing, content description, manipulation and analysis, that are applied to all the recorded bioacoustics signals, the auxiliary audio-visual surveillance information (for the monitoring of experiments and the subjects' status), and the extracted audio-video sequences describing the abdominal sound-field alterations. The thesis outline is as follows. The main objective of the thesis, which is the technological support of medical research, is presented in the first chapter. A quick problem definition is initially ...

Dimoulas, Charalampos — Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Bayesian methods for sparse and low-rank matrix problems

Many scientific and engineering problems require us to process measurements and data in order to extract information. Since we base decisions on information, it is important to design accurate and efficient processing algorithms. This is often done by modeling the signal of interest and the noise in the problem. One type of modeling is Compressed Sensing, where the signal has a sparse or low-rank representation. In this thesis we study different approaches to designing algorithms for sparse and low-rank problems. Greedy methods are fast methods for sparse problems which iteratively detects and estimates the non-zero components. By modeling the detection problem as an array processing problem and a Bayesian filtering problem, we improve the detection accuracy. Bayesian methods approximate the sparsity by probability distributions which are iteratively modified. We show one approach to making the Bayesian method the Relevance Vector ...

Sundin, Martin — Department of Signal Processing, Royal Institute of Technology KTH


Distributed Memory Reduction Operations in Presence of Process Desynchronization

Despite decades of exponential growth in computational power, humans continue to find new problems that eclipse available computational resources. This unrelenting pursuit for computational power has brought about supercomputers consisting of millions of individual computing units. Writing programs that would efficiently utilize the computational power of such complex machines has turned out to be a major challenge. As of today, most \ac{HPC} applications continue to be based on the distributed memory programming paradigm, through the use of \ac{MPI}. One of the principal drivers behind the research in this dissertation was the coupling of multi-scale and multi-physics iPIC3D space weather simulation with in-situ raytraced visualization for real-time simulation steering. This application was developed by the Leuven Intel ExaScale Lab as a research prototype for the type of HPC applications projected to run on exascale machines of the 2018-2020 timeframe. Due to ...

Marendic, Petar — Vrije Universiteit Brussel


Towards Automatic Extraction of Harmony Information from Music Signals

In this thesis we address the subject of automatic extraction of harmony information from audio recordings. We focus on chord symbol recognition and methods for evaluating algorithms designed to perform that task. We present a novel six-dimensional model for equal tempered pitch space based on concepts from neo-Riemannian music theory. This model is employed as the basis of a harmonic change detection function which we use to improve the performance of a chord recognition algorithm. We develop a machine readable text syntax for chord symbols and present a hand labelled chord transcription collection of 180 Beatles songs annotated using this syntax. This collection has been made publicly available and is already widely used for evaluation purposes in the research community. We also introduce methods for comparing chord symbols which we subsequently use for analysing the statistics of the transcription collection. ...

Harte, Christopher — Queen Mary, University of London


Unsupervised Domain Adaptation with Private Data

The recent success of deep learning is conditioned on the availability of large annotated datasets for supervised learning. Data annotation, however, is a laborious and a time-consuming task. When a model fully trained on an annotated source domain is applied to a target domain with different data distribution, a greatly diminished generalization performance can be observed due to domain shift. Unsupervised Domain Adaptation (UDA) aims to mitigate the impact of domain shift when the target domain is unannotated. The majority of UDA algorithms assume joint access between source and target data, which may violate data privacy restrictions in many real world applications. In this thesis I propose source-free UDA approaches that are well suited for scenarios when source and target data are only accessible sequentially. I show that across several application domains, for the adaptation process to be successful it ...

Stan Serban — University of Southern California


Signal Quantization and Approximation Algorithms for Federated Learning

Distributed signal or information processing using Internet of Things (IoT), facilitates real-time monitoring of signals, for example, environmental pollutants, health indicators, and electric energy consumption in a smart city. Despite the promising capabilities of IoTs, these distributed deployments often face the challenge of data privacy and communication rate constraints. In traditional machine learning, training data is moved to a data center, which requires massive data movement from distributed IoT devices to a third-party location, thus raising concerns over privacy and inefficient use of communication resources. Moreover, the growing network size, model size, and data volume combined lead to unusual complexity in the design of optimization algorithms beyond the compute capability of a single device. This necessitates novel system architectures to ensure stable and secure operations of such networks. Federated learning (FL) architecture, a novel distributed learning paradigm introduced by McMahan ...

A, Vijay — Indian Institute of Technology Bombay


Distributed Localization and Tracking of Acoustic Sources

Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...

Dorfan, Yuval — Bar Ilan University


Biological Image Analysis

In biological research images are extensively used to monitor growth, dynamics and changes in biological specimen, such as cells or plants. Many of these images are used solely for observation or are manually annotated by an expert. In this dissertation we discuss several methods to automate the annotating and analysis of bio-images. Two large clusters of methods have been investigated and developed. A first set of methods focuses on the automatic delineation of relevant objects in bio-images, such as individual cells in microscopic images. Since these methods should be useful for many different applications, e.g. to detect and delineate different objects (cells, plants, leafs, ...) in different types of images (different types of microscopes, regular colour photographs, ...), the methods should be easy to adjust. Therefore we developed a methodology relying on probability theory, where all required parameters can easily ...

De Vylder, Jonas — Ghent University


Statistical-dynamical channel modeling of outdoor optical wireless links

The growing need for Earth observation and monitoring systems has stimulated considerable interest in free-space optical wireless (FSO) systems because of the huge bandwidth requirements. However, terrestrial FSO links are severely impacted by weather conditions especially dense fog to a larger extent while, rain and snow to a lesser extent. For the proper deployment of FSO technology requires a better understanding of the free-space channel transmission characteristics as they have major influence on the transmission link properties like link availability, reliability and quality of service. This thesis provides new insight on the fog microphysics, its characterization and the fog attenuation modeling. A comprehensive analysis of the measured fog attenuations is presented by building the discussion through comparison of recorded attenuations at Graz (Austria), Milan (Italy), Nice (France) and Prague (Czech Republic). It was observed that fog attenuations in radiation fog ...

Awan, Muhammad Saleem — Graz University of Technology


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Analysis of energy based signal detection

The focus of this thesis is on the binary signal detection problem, i.e., if a signal or signals are present or not. Depending on the application, the signal to be detected can be either unknown or known. The detection is based on some function of the received samples which is compared to a threshold. If the threshold is exceeded, it is decided that signal(s) is (are) present. Energy detectors (radiometers) are often used due to their simplicity and good performance. The main goal here is to develop and analyze energy based detectors as well as power-law based detectors. Different possibilities for setting the detection threshold for a quantized total power radiometer are analyzed. The main emphasis is on methods that use reference samples. In particular, the cell-averaging (CA) constant false alarm rate (CFAR) threshold setting method is analyzed. Numerical examples ...

Janne Lehtomäki — University of Oulou


Contributions to signal analysis and processing using compressed sensing techniques

Chapter 2 contains a short introduction to the fundamentals of compressed sensing theory, which is the larger context of this thesis. We start with introducing the key concepts of sparsity and sparse representations of signals. We discuss the central problem of compressed sensing, i.e. how to adequately recover sparse signals from a small number of measurements, as well as the multiple formulations of the reconstruction problem. A large part of the chapter is devoted to some of the most important conditions necessary and/or sufficient to guarantee accurate recovery. The aim is to introduce the reader to the basic results, without the burden of detailed proofs. In addition, we also present a few of the popular reconstruction and optimization algorithms that we use throughout the thesis. Chapter 3 presents an alternative sparsity model known as analysis sparsity, that offers similar recovery ...

Cleju, Nicolae — "Gheorghe Asachi" Technical University of Iasi


Variational Sparse Bayesian Learning: Centralized and Distributed Processing

In this thesis we investigate centralized and distributed variants of sparse Bayesian learning (SBL), an effective probabilistic regression method used in machine learning. Since inference in an SBL model is not tractable in closed form, approximations are needed. We focus on the variational Bayesian approximation, as opposed to others used in the literature, for three reasons: First, it is a flexible general framework for approximate Bayesian inference that estimates probability densities including point estimates as a special case. Second, it has guaranteed convergence properties. And third, it is a deterministic approximation concept that is even applicable for high dimensional problems where non-deterministic sampling methods may be prohibitive. We resolve some inconsistencies in the literature involved in other SBL approximation techniques with regard to a proper Bayesian treatment and the incorporation of a very desired property, namely scale invariance. More specifically, ...

Buchgraber, Thomas — Graz University of Technology


Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers

This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...

Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.