A Game-Theoretic Approach for Adversarial Information Fusion in Distributed Sensor Networks

Every day we share our personal information through digital systems which are constantly exposed to threats. For this reason, security-oriented disciplines of signal processing have received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network monitoring, steganography and steganalysis are just a few examples. Even though each of these elds has its own peculiarities, they all have to deal with a common problem: the presence of one or more adversaries aiming at making the system fail. Adversarial Signal Processing lays the basis of a general theory that takes into account the impact that the presence of an adversary has on the design of effective signal processing tools. By focusing on the application side of Adversarial Signal Processing, namely adversarial information fusion in distributed sensor networks, and adopting a game-theoretic approach, this thesis contributes to the above mission ...

Kallas, Kassem — University of Siena


Digital Forensic Techniques for Splicing Detection in Multimedia Contents

Visual and audio contents always played a key role in communications, because of their immediacy and presumed objectivity. This has become even more true in the digital era, and today it is common to have multimedia contents stand as proof of events. Digital contents, however, are also very easy to manipulate, thus calling for analysis methods devoted to uncover their processing history. Multimedia forensics is the science trying to answer questions about the past of a given image, audio or video file, questions like “which was the recording device?", or “is the content authentic?". In particular, authenticity assessment is a crucial task in many contexts, and it usually consists in determining whether the investigated object has been artificially created by splicing together different contents. In this thesis we address the problem of splicing detection in the three main media: image, ...

Fontani, Marco — Dept. of Information Engineering and Mathematics, University of Siena


Light Field Based Biometric Recognition and Presentation Attack Detection

In a world where security issues have been gaining explosive importance, face and ear recognition systems have attracted increasing attention in multiple application areas, ranging from forensics and surveillance to commerce and entertainment. While the recognition performance has been steadily improving, there are still challenging recognition scenarios and conditions, notably when facing large variations in the biometric data characteristics. Additionally, the widespread use of face and ear recognition solutions raises new security concerns, making the robustness against presentation attacks a very active field of research. Lenslet light field cameras have recently come into prominence as they are able to also capture the intensity of the light rays coming from multiple directions, thus offering a richer representation of the visual scene, notably spatio-angular information. To take benefit of this richer representation, light field cameras have recently been successfully applied, not only ...

Alireza Sepas-Moghaddam — Instituto Superior Técnico, University of Lisbon


Voice biometric system security: Design and analysis of countermeasures for replay attacks

Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...

Bhusan Chettri — Queen Mary University of London


Theoretical Foundations of Adversarial Detection and Applications to Multimedia Forensics

Every day we share our personal information with digital systems which are constantly exposed to threats. Security-oriented disciplines of signal processing have then received increasing attention in the last decades: multimedia forensics, digital watermarking, biometrics, network intrusion detection, steganography and steganalysis are just a few examples. Even though each of these fields has its own peculiarities, they all have to deal with a common problem: the presence of adversaries aiming at making the system fail. It is the purpose of Adversarial Signal Processing to lay the basis of a general theory that takes into account the impact of an adversary on the design of effective signal processing tools. By focusing on the most prominent problem of Adversarial Signal Processing, namely binary detection or Hypothesis Testing, we contribute to the above mission with a general theoretical framework for the binary detection ...

Tondi, Benedetta — University of Siena


Digital Processing Based Solutions for Life Science Engineering Recognition Problems

The field of Life Science Engineering (LSE) is rapidly expanding and predicted to grow strongly in the next decades. It covers areas of food and medical research, plant and pests’ research, and environmental research. In each research area, engineers try to find equations that model a certain life science problem. Once found, they research different numerical techniques to solve for the unknown variables of these equations. Afterwards, solution improvement is examined by adopting more accurate conventional techniques, or developing novel algorithms. In particular, signal and image processing techniques are widely used to solve those LSE problems require pattern recognition. However, due to the continuous evolution of the life science problems and their natures, these solution techniques can not cover all aspects, and therefore demanding further enhancement and improvement. The thesis presents numerical algorithms of digital signal and image processing to ...

Hussein, Walid — Technische Universität München


Deep Learning for Event Detection, Sequence Labelling and Similarity Estimation in Music Signals

When listening to music, some humans can easily recognize which instruments play at what time or when a new musical segment starts, but cannot describe exactly how they do this. To automatically describe particular aspects of a music piece – be it for an academic interest in emulating human perception, or for practical applications –, we can thus not directly replicate the steps taken by a human. We can, however, exploit that humans can easily annotate examples, and optimize a generic function to reproduce these annotations. In this thesis, I explore solving different music perception tasks with deep learning, a recent branch of machine learning that optimizes functions of many stacked nonlinear operations – referred to as deep neural networks – and promises to obtain better results or require less domain knowledge than more traditional techniques. In particular, I employ ...

Schlüter, Jan — Department of Computational Perception, Johannes Kepler University Linz


Active and Passive Approaches for Image Authentication

The generation and manipulation of digital images is made simple by widely available digital cameras and image processing software. As a consequence, we can no longer take the authenticity of a digital image for granted. This thesis investigates the problem of protecting the trustworthiness of digital images. Image authentication aims to verify the authenticity of a digital image. General solution of image authentication is based on digital signature or watermarking. A lot of studies have been conducted for image authentication, but thus far there has been no solution that could be robust enough to transmission errors during images transmission over lossy channels. On the other hand, digital image forensics is an emerging topic for passively assessing image authenticity, which works in the absence of any digital watermark or signature. This thesis focuses on how to assess the authenticity images when ...

Ye, Shuiming — National University of Singapore


Audio-visual processing and content management techniques, for the study of (human) bioacoustics phenomena

The present doctoral thesis aims towards the development of new long-term, multi-channel, audio-visual processing techniques for the analysis of bioacoustics phenomena. The effort is focused on the study of the physiology of the gastrointestinal system, aiming at the support of medical research for the discovery of gastrointestinal motility patterns and the diagnosis of functional disorders. The term "processing" in this case is quite broad, incorporating the procedures of signal processing, content description, manipulation and analysis, that are applied to all the recorded bioacoustics signals, the auxiliary audio-visual surveillance information (for the monitoring of experiments and the subjects' status), and the extracted audio-video sequences describing the abdominal sound-field alterations. The thesis outline is as follows. The main objective of the thesis, which is the technological support of medical research, is presented in the first chapter. A quick problem definition is initially ...

Dimoulas, Charalampos — Department of Electrical and Computer Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece


Automatic Classification of Digital Communication Signal Modulations

Automatic modulation classification detects the modulation type of received communication signals. It has important applications in military scenarios to facilitate jamming, intelligence, surveillance, and threat analysis. The renewed interest from civilian scenes has been fueled by the development of intelligent communications systems such as cognitive radio and software defined radio. More specifically, it is complementary to adaptive modulation and coding where a modulation can be deployed from a set of candidates according to the channel condition and system specification for improved spectrum efficiency and link reliability. In this research, we started by improving some existing methods for higher classification accuracy but lower complexity. Machine learning techniques such as k-nearest neighbour and support vector machine have been adopted for simplified decision making using known features. Logistic regression, genetic algorithm and genetic programming have been incorporated for improved classification performance through feature ...

Zhechen Zhu — Brunel University London


Study and application of acoustic information for the detection of harmful content, and fusion with visual information

This thesis aims at investigating and developing techniques for content-based segmentation and classification of multimedia files, based on audio information. Emphasis has been given to analyzing the content of films based on audio information. In addition, part of the thesis is focused on the detection of audio classes related to violent content (e.g., gunshots, screams, etc).

Giannakopoulos, Theodoros — University of Athens


Automatic Detection, Classification and Restoration of Defects in Historical Images

Historical photos are significant attestations of the inheritance of the past. Since Photography is an art that is more than 150 years old, more and more diffuse are the photographic archives all over the world. Nevertheless, time and bad preservation corrupts physical supports, and many important historical documents risk to be ruined and their content lost. Therefore solutions must be implemented to preserve their state and to recover damaged information. This PhD thesis proposes a general methodology, and several applicative solutions, to handle these problems, by means of digitization and digital restoration. The purpose is to create a useful tool to support non-expert users in the restoration process of damaged historical images. The content of this thesis is outlined as follows: Chapter 1 gives an overview on the problems related to management and preservation of cultural repositories, and discusses about ...

Mazzola, Giuseppe — Università degli studi di Palermo - Dipartimento di Ingegneria Informatica


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Deep learning for semantic description of visual human traits

The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...

Antipov, Grigory — Télécom ParisTech (Eurecom)


Learning Transferable Knowledge through Embedding Spaces

The unprecedented processing demand, posed by the explosion of big data, challenges researchers to design efficient and adaptive machine learning algorithms that do not require persistent retraining and avoid learning redundant information. Inspired from learning techniques of intelligent biological agents, identifying transferable knowledge across learning problems has been a significant research focus to improve machine learning algorithms. In this thesis, we address the challenges of knowledge transfer through embedding spaces that capture and store hierarchical knowledge. In the first part of the thesis, we focus on the problem of cross-domain knowledge transfer. We first address zero-shot image classification, where the goal is to identify images from unseen classes using semantic descriptions of these classes. We train two coupled dictionaries which align visual and semantic domains via an intermediate embedding space. We then extend this idea by training deep networks that ...

Mohammad Rostami — University of Pennsylvania

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.