MPEGII Video Coding For Noisy Channels (1998)
Scalable Single and Multiple Description Scalar Quantization
Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...
Satti, Shahid Mahmood — Vrije Universiteit Brussel
Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies
With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...
Frossard, Pascal — Swiss Federal Institute of Technology
Nonlinear rate control techniques for constant bit rate MPEG video coders
Digital visual communication has been increasingly adopted as an efficient new medium in a variety of different fields; multi-media computers, digital televisions, telecommunications, etc. Exchange of visual information between remote sites requires that digital video is encoded by compressing the amount of data and transmitting it through specified network connections. The compression and transmission of digital video is an amalgamation of statistical data coding processes, which aims at efficient exchange of visual information without technical barriers due to different standards, services, media, etc. It is associated with a series of different disciplines of digital signal processing, each of which can be applied independently. It includes a few different technical principles; distortion, rate theory, prediction techniques and control theory. The MPEG (Moving Picture Experts Group) video compression standard is based on this paradigm, thus, it contains a variety of different coding ...
Saw, Yoo-Sok — University Of Edinburgh
Active and Passive Approaches for Image Authentication
The generation and manipulation of digital images is made simple by widely available digital cameras and image processing software. As a consequence, we can no longer take the authenticity of a digital image for granted. This thesis investigates the problem of protecting the trustworthiness of digital images. Image authentication aims to verify the authenticity of a digital image. General solution of image authentication is based on digital signature or watermarking. A lot of studies have been conducted for image authentication, but thus far there has been no solution that could be robust enough to transmission errors during images transmission over lossy channels. On the other hand, digital image forensics is an emerging topic for passively assessing image authenticity, which works in the absence of any digital watermark or signature. This thesis focuses on how to assess the authenticity images when ...
Ye, Shuiming — National University of Singapore
Multiple Description Coding for Path Diversity Video Streaming
In the current heterogeneous communication environments, the great variety of multimedia systems and applications combined with fast evolution of networking architectures and topologies, give rise to new research problems related to the various elements of the communication chain. This includes, the ever present problem in video communications, which results from the need for coping with transmission errors and losses. In this context, video streaming with path diversity appeared as a novel communication framework, involving different technological fields and posing several research challenges. The research work carried out in this thesis is a contribution to robust video coding and adaptation techniques in the field of Multiple Description Coding (MDC) for multipath video streaming. The thesis starts with a thorough study of MDC and its theoretical basis followed by a description of the most important practical implementation aspects currently available in literature. ...
Correia, Pedro Daniel Frazão — University of Coimbra
Error Resilience and Concealment Techniques for High Efficiency Video Coding
This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the ...
João Filipe Monteiro Carreira — Loughborough University London
Watermark-based error concealment algorithms for low bit rate video communications
In this work, a novel set of robust watermark-based error concealment (WEC) algorithms are proposed. Watermarking is used to introduce redundancy to the transmitted data with little or no increase in its bit rate during transmission. The proposed algorithms involve generating a low resolution version of a video frame and seamlessly embedding it as a watermark in the frame itself during encoding. At the receiver, the watermark is extracted from the reconstructed frame and the lost information is recovered using the extracted watermark signal, thus enhancing its perceptual quality. Three DCT-based spread spectrum watermark embedding techniques are presented in this work. The first technique uses a multiplicative Gaussian pseudo-noise with a pre-defined spreading gain and fixed chip rate. The second one is its adaptively scaled version and the third technique uses informed watermarking. Two versions of the low resolution reference, ...
Adsumilli, Chowdary — University of California, Santa Barbara
Error Resilient Transmission of Video Streaming over Wireless Mobile Networks,
The third generation of mobile systems brought higher data rates that allow for provisioning of multimedia services containing also video. The real-time services like video call, conferencing, and streaming are particularly challenging for mobile communication systems due to the wireless channel quality variations. The mechanism for video compression utilizes a hybrid of temporal and spatial prediction, transform coding and variable length coding. The combination of these methods provides high compression gain, but at the same time makes the encoded stream more prone to errors. In this thesis, techniques for error resilient transmission of video streaming over wireless mobile networks are investigated. Focus is given to the recent H.264/AVC standard, although the ma jority of the proposed method apply to other video coding standards, too. The first part is dedicated to exploiting the residual redundancy of the received video stream at ...
Nemethova, O. — Vienna University of Technology
Traditional and Scalable Coding Techniques for Video Compression
In recent years, the usage of digital video has steadily been increasing. Since the amount of data for uncompressed digital video representation is very high, lossy source coding techniques are usually employed in digital video systems to compress that information and make it more suitable for storage and transmission. The source coding algorithms for video compression can be grouped into two big classes: the traditional and the scalable techniques. The goal of the traditional video coders is to maximize the compression efficiency corresponding to a given amount of compressed data. The goal of scalable video coding is instead to give a scalable representation of the source, such that subsets of it are able to describe in an optimal way the same video source but with reduced resolution in the temporal, spatial and/or quality domain. This thesis is focused on the ...
Cappellari, Lorenzo — University of Padova
The growing risk of privacy violation and espionage associated with the rapid spread of mobile communications renewed interest in the original concept of sending encrypted voice as audio signal over arbitrary voice channels. The usual methods used for encrypted data transmission over analog telephony turned out to be inadequate for modern vocal links (cellular networks, VoIP) equipped with voice compression, voice activity detection, and adaptive noise suppression algorithms. The limited available bandwidth, nonlinear channel distortion, and signal fadings motivate the investigation of a dedicated, joint approach for speech encoding and encryption adapted to modern noisy voice channels. This thesis aims to develop, analyze, and validate secure and efficient schemes for real-time speech encryption and transmission via modern voice channels. In addition to speech encryption, this study covers the security and operational aspects of the whole voice communication system, as this ...
Krasnowski, Piotr — Université Côte d'Azur
Accounting for channel constraints in joint source-channel video coding schemes
SoftCast based Linear Video Coding (LVC) schemes have been emerged in the last decade as a quasi analog joint-source-channel alternative to classical video coding schemes. Theoretical analyses have shown that analog coding is better than digital coding in a multicast scenario when the channel signal-to-noise ratios (C-SNR) differ among receivers. LVC schemes provide in such context a decoded video quality at different receivers proportional to their C-SNR. This thesis considers first the channel precoding and decoding matrix design problem for LVC schemes under a per-subchannel power constraint. Such constraint is found, e.g., on Power Line Telecommunication (PLT) channels and is similar to per-antenna power constraints in multi-antenna transmission system. An optimal design approach is proposed, involving a multi-level water filling algorithm and the solution of a structured Hermitian Inverse Eigenvalue problem. Three lower-complexity alternative suboptimal algorithms are also proposed. Extensive ...
Zheng, Shuo — TélécomParis
Factor Graph Based Detection Schemes for Mobile Terrestrial DVB Systems with Long OFDM Blocks
This PhD dissertation analyzes the performance of second generation digital video broadcasting (DVB) systems in mobile terrestrial environments and proposes an iterative detection algorithm based on factor graphs (FG) to reduce the distortion caused by the time variation of the channel, providing error-free communication in very severe mobile conditions. The research work focuses on mobile scenarios where the intercarrier interference (ICI) is very high: high vehicular speeds when long orthogonal frequency-division multiplexing (OFDM) blocks are used. As a starting point, we provide the theoretical background on the main topics behind the transmission and reception of terrestrial digital television signals in mobile environments, long with a general overview of the main signal processing techniques included in last generation terrestrial DVB systems. The proposed FG-based detector design is then assessed over a simpli ed bit-interleaved coded modulation (BICM)-OFDM communication scheme for a ...
Ochandiano, Pello — University of Mondragon
Adaptive media streaming over multipath networks
With the latest developments in video coding technology and fast deployment of end-user broadband internet connections, real-time media applications become increasingly interesting for both private users and businesses. However, the internet remains a best-effort service network unable to guarantee the stringent requirements of the media application, in terms of high, constant bandwidth, low packet loss rate and transmission delay. Therefore, efficient adaptation mechanisms must be derived in order to bridge the application requirements with the transport medium characteristics. Lately, different network architectures, e.g., peer-to-peer networks, content distribution networks, parallel wireless services, emerge as potential solutions for reducing the cost of communication or infrastructure, and possibly improve the application performance. In this thesis, we start from the path diversity characteristic of these architectures, in order to build a new framework, specific for media streaming in multipath networks. Within this framework we ...
Jurca, Dan — EPFL/ITS, Lausanne, Switzerland
Integration of human color vision models into high quality image compression
Strong academic and commercial interest in image compression has resulted in a number of sophisticated compression techniques. Some of these techniques have evolved into international standards such as JPEG. However, the widespread success of JPEG has slowed the rate of innovation in such standards. Even most recent techniques, such as those proposed in the JPEG2000 standard, do not show significantly improved compression performance; rather they increase the bitstream functionality. Nevertheless, the manifold of multimedia applications demands for further improvements in compression quality. The problem of stagnating compression quality can be overcome by exploiting the limitations of the human visual system (HVS) for compression purposes. To do so, commonly used distortion metrics such as mean-square error (MSE) are replaced by an HVS-model-based quality metric. Thus, the "visual" quality is optimized. Due to the tremendous complexity of the physiological structures involved in ...
Nadenau, Marcus J. — Swiss Federal Institute of Technology
Lossless and nearly lossless digital video coding
In lossless coding, compresssion and decompression of source data result in the exact recovery of the individual elements of the original source data. Lossless image / video coding is necessary in applications where no loss of pixel values is tolerable. Examples are medical imaging, remote sensing, in image/video archives and studio applications where tandem- and trans-coding are used in editing, which can lead to accumulating errors. Nearly-lossless coding is used in applications where a small error, defined as a maximum error or as a root mean square (rms) error, is tolerable. In lossless embedded coding, a losslessly coded bit stream can be decoded at any bit rate lower than the lossless bit rate. In this thesis, research on embedded lossless video coding based on a motion compensated framework, similar to that of MPEG-2, is presented. Transforms that map integers into ...
Abhayaratne, Charith — University of Bath
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.