Design and evaluation of digital signal processing algorithms for acoustic feedback and echo cancellation

This thesis deals with several open problems in acoustic echo cancellation and acoustic feedback control. Our main goal has been to develop solutions that provide a high performance and sound quality, and behave in a robust way in realistic conditions. This can be achieved by departing from the traditional ad-hoc methods, and instead deriving theoretically well-founded solutions, based on results from parameter estimation and system identification. In the development of these solutions, the computational efficiency has permanently been taken into account as a design constraint, in that the complexity increase compared to the state-of-the-art solutions should not exceed 50 % of the original complexity. In the context of acoustic echo cancellation, we have investigated the problems of double-talk robustness, acoustic echo path undermodeling, and poor excitation. The two former problems have been tackled by including adaptive decorrelation filters in the ...

van Waterschoot, Toon — Katholieke Universiteit Leuven


Adaptive filtering algorithms for acoustic echo cancellation and acoustic feedback control in speech communication applications

Multimedia consumer electronics are nowadays everywhere from teleconferencing, hands-free communications, in-car communications to smart TV applications and more. We are living in a world of telecommunication where ideal scenarios for implementing these applications are hard to find. Instead, practical implementations typically bring many problems associated to each real-life scenario. This thesis mainly focuses on two of these problems, namely, acoustic echo and acoustic feedback. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and hands-free telephony where the existence of echoes degrades the intelligibility and listening comfort. On the other hand, acoustic feedback limits the maximum amplification that can be applied in, e.g., in-car communications or in conferencing systems, before howling due to instability, appears. Even though AEC and acoustic feedback cancellation (AFC) are functional in many applications, there are still open issues. This means that ...

Gil-Cacho, Jose Manuel — KU Leuven


Solving inverse problems in room acoustics using physical models, sparse regularization and numerical optimization

Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...

Antonello, Niccolò — KU Leuven


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Adaptive Signal Processing for Power Line Communications

This thesis represents a significant part of the research activity conducted during the PhD program in Information Technologies, supported by Selta S.p.A, Cadeo, Italy, focused on the analysis and design of a Power Line Communications (PLC) system. In recent times the PLC technologies have been considered for integration in Smart Grids architectures, as they are used to exploit the existing power line infrastructure for information transmission purposes on low, medium and high voltage lines. The characterization of a reliable PLC system is a current object of research as well as it is the design of modems for communications over the power lines. In this thesis, the focus is on the analysis of a full-duplex PLC modem for communication over high-voltage lines, and, in particular, on the design of the echo canceller device and innovative channel coding schemes. The first part ...

Tripodi, Carlo — Università degli Studi di Parma


On Ways to Improve Adaptive Filter Performance

Adaptive filtering techniques are used in a wide range of applications, including echo cancellation, adaptive equalization, adaptive noise cancellation, and adaptive beamforming. The performance of an adaptive filtering algorithm is evaluated based on its convergence rate, misadjustment, computational requirements, and numerical robustness. We attempt to improve the performance by developing new adaptation algorithms and by using "unconventional" structures for adaptive filters. Part I of this dissertation presents a new adaptation algorithm, which we have termed the Normalized LMS algorithm with Orthogonal Correction Factors (NLMS-OCF). The NLMS-OCF algorithm updates the adaptive filter coefficients (weights) on the basis of multiple input signal vectors, while NLMS updates the weights on the basis of a single input vector. The well-known Affine Projection Algorithm (APA) is a special case of our NLMS-OCF algorithm. We derive convergence and tracking properties of NLMS-OCF using a simple model ...

Sankaran, Sundar G. — Virginia Tech


Robust Equalization of Multichannel Acoustic Systems

In most real-world acoustical scenarios, speech signals captured by distant microphones from a source are reverberated due to multipath propagation, and the reverberation may impair speech intelligibility. Speech dereverberation can be achieved by equalizing the channels from the source to microphones. Equalization systems can be computed using estimates of multichannel acoustic impulse responses. However, the estimates obtained from system identification always include errors; the fact that an equalization system is able to equalize the estimated multichannel acoustic system does not mean that it is able to equalize the true system. The objective of this thesis is to propose and investigate robust equalization methods for multichannel acoustic systems in the presence of system identification errors. Equalization systems can be computed using the multiple-input/output inverse theorem or multichannel least-squares method. However, equalization systems obtained from these methods are very sensitive to system ...

Zhang, Wancheng — Imperial College London


Speech derereverberation in noisy environments using time-frequency domain signal models

Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...

Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg


Three-Dimensional Digital Waveguide Mesh Modelling for Room Acoustic Simulation

Accurate auralisation remains the Holy Grail of room acoustics. Until now the models used for room impulse response (RIR) simulation have been either impractical to use due to excessive computational loading or based upon simplified approaches, unable to provide the levels of perceptual accuracy required by many applications. An example is the archaeological acoustic investigation of the intriguing properties of Neolithic passage graves such as Newgrange. After reviewing the currently available options, this thesis concentrates on digital waveguide mesh (DWM) physical modelling, on the premise that the three-dimensional (3D) version of this technique can be developed to provide the desired accuracy with reasonable computation times. Various 3D-mesh topologies, namely rectilinear, tetrahedral, octahedral and cubic close-packed (CCP), are analysed. Room simulation packages have been implemented for the rectilinear and tetrahedral topologies. Both are capable of generating highly scalable parallel models through ...

Campos, Guilherme — University of York / Department of Electronics


Orthonormal Bases for Adaptive filtering

In the field of adaptive filtering the most commonly applied filter structure is the transversal filter, also referred to as the tapped-delay line (TDL). The TDL is composed of a cascade of unit delay elements that are tapped, weighted and then summed. Thus, the output of a TDL is formed by a linear combination of its input signal at various delays. The weights in this linear combination are called the tap weights. The number of delay elements, or equivalently the number of tap weights, determines the duration of the impulse response of the TDL. For this reason, one often speaks of a finite impulse response (FIR) filter. In a general adaptive filtering scheme the adaptive filter aims to minimize a certain measure of error between its output and a desired signal. Usually, a quadratic cost criterion is taken: the so-called ...

Belt, harm — Eindhoven University of Technology


Some Contributions to Adaptive Filtering for Acoustic Multiple-Input/Multiple-Output Systems in the Wave Domain

Recently emerging techniques like wave field synthesis (WFS) or Higher-Order Ambisonics (HOA) allow for high-quality spatial audio reproduction, which makes them candidates for the audio reproduction in future telepresence systems or interactive gaming environments with acoustic human-machine interfaces. In such scenarios, acoustic echo cancellation (AEC) will generally be necessary to remove the loudspeaker echoes in the recorded microphone signals before further processing. Moreover, the reproduction quality of WFS or HOA can be improved by adaptive pre-equalization of the loudspeaker signals, as facilitated by listening room equalization (LRE). However, AEC and LRE require adaptive filters, where the large number of reproduction channels of WFS and HOA imply major computational and algorithmic challenges for the implementation of adaptive filters. A technique called wave-domain adaptive filtering (WDAF) promises to master these challenges. However, known literature is still far away from providing sufficient insight ...

Schneider, Martin — Friedrich-Alexander-University Erlangen-Nuremberg


Performance Improvement of Multichannel Audio by Graphics Processing Units

Multichannel acoustic signal processing has undergone major development in recent years due to the increased complexity of current audio processing applications. People want to collaborate through communication with the feeling of being together and sharing the same environment, what is considered as Immersive Audio Schemes. In this phenomenon, several acoustic effects are involved: 3D spatial sound, room compensation, crosstalk cancelation, sound source localization, among others. However, high computing capacity is required to achieve any of these effects in a real large-scale system, what represents a considerable limitation for real-time applications. The increase of the computational capacity has been historically linked to the number of transistors in a chip. However, nowadays the improvements in the computational capacity are mainly given by increasing the number of processing units, i.e expanding parallelism in computing. This is the case of the Graphics Processing Units ...

Belloch, Jose A. — Universitat Politècnica de València


Distributed Localization and Tracking of Acoustic Sources

Localization, separation and tracking of acoustic sources are ancient challenges that lots of animals and human beings are doing intuitively and sometimes with an impressive accuracy. Artificial methods have been developed for various applications and conditions. The majority of those methods are centralized, meaning that all signals are processed together to produce the estimation results. The concept of distributed sensor networks is becoming more realistic as technology advances in the fields of nano-technology, micro electro-mechanic systems (MEMS) and communication. A distributed sensor network comprises scattered nodes which are autonomous, self-powered modules consisting of sensors, actuators and communication capabilities. A variety of layout and connectivity graphs are usually used. Distributed sensor networks have a broad range of applications, which can be categorized in ecology, military, environment monitoring, medical, security and surveillance. In this dissertation we develop algorithms for distributed sensor networks ...

Dorfan, Yuval — Bar Ilan University


Adaptive Calibration of Frequency Response Mismatches in Time-Interleaved Analog-to-Digital Converters

The performance of today's communication systems is highly dependent on the employed analog-to-digital converters (ADCs), and in order to provide more flexibility and precision for the emerging communication technologies, high-performance ADCs are required. In this regard, the time-interleaved operation of an array of ADCs (TI-ADC) can be a reasonable solution. A TI-ADC can increase its throughput by using M channel ADCs or subconverters in parallel and sampling the input signal in a time-interleaved manner. However, the performance of a TI-ADC badly suffers from the mismatches among the channel ADCs. The mismatches among channel ADCs distort the TI-ADC output spectrum by introducing spurious tones besides the actual signal components. This thesis deals with the adaptive background calibration of frequency-response mismatches in a TI-ADC. By modeling each channel ADC as a linear time-invariant system, we develop the continuous-time, discrete-time, and time-varying system ...

Saleem, Shahzad — Graz University of Technology


Adaptive Noise Cancelation in Speech Signals

Today, adaptive algorithms represent one of the most frequently used computational tools for the processing of digital speech signals. This work investigates and analyzes the properties of adaptive algorithms in speech communication applications where rigorous conditions apply, such as noise and echo cancelation. Like other theses in this field do, it tries to tackle the ever-lasting problem of computational complexity vs. rate of convergence. It introduces some new adaptive methods that stem from the existing algorithms as well as a novel concept which has been entitled Optimal Step-Size (OSS). In the first part of the thesis we investigate some well-known, widely used adaptive techniques such as the Normalized Least Mean Squares (NLMS) and the Recursive Least Mean Squares (RLS). In spite of the fact that the NLMS and the RLS belong to the "simplest" principles, as far as complexity is ...

Malenovsky, Vladimir — Department of Telecommunications, Brno University of Technology, Czech Republic

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.