Acoustic Event Detection: Feature, Evaluation and Dataset Design

It takes more time to think of a silent scene, action or event than finding one that emanates sound. Not only speaking or playing music but almost everything that happens is accompanied with or results in one or more sounds mixed together. This makes acoustic event detection (AED) one of the most researched topics in audio signal processing nowadays and it will probably not see a decline anywhere in the near future. This is due to the thirst for understanding and digitally abstracting more and more events in life via the enormous amount of recorded audio through thousands of applications in our daily routine. But it is also a result of two intrinsic properties of audio: it doesn’t need a direct sight to be perceived and is less intrusive to record when compared to image or video. Many applications such ...

Mina Mounir — KU Leuven, ESAT STADIUS


Sound Event Detection by Exploring Audio Sequence Modelling

Everyday sounds in real-world environments are a powerful source of information by which humans can interact with their environments. Humans can infer what is happening around them by listening to everyday sounds. At the same time, it is a challenging task for a computer algorithm in a smart device to automatically recognise, understand, and interpret everyday sounds. Sound event detection (SED) is the process of transcribing an audio recording into sound event tags with onset and offset time values. This involves classification and segmentation of sound events in the given audio recording. SED has numerous applications in everyday life which include security and surveillance, automation, healthcare monitoring, multimedia information retrieval, and assisted living technologies. SED is to everyday sounds what automatic speech recognition (ASR) is to speech and automatic music transcription (AMT) is to music. The fundamental questions in designing ...

[Pankajakshan], [Arjun] — Queen Mary University of London


Voice biometric system security: Design and analysis of countermeasures for replay attacks

Voice biometric systems use automatic speaker verification (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoofing attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoofing attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount - yet difficult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The first part of the thesis investigates existing methods for spoofing detection from several perspectives. I first study the generalisability of hand-crafted features for replay detection that show promising results ...

Bhusan Chettri — Queen Mary University of London


A Computational Framework for Sound Segregation in Music Signals

Music is built from sound, ultimately resulting from an elaborate interaction between the sound-generating properties of physical objects (i.e. music instruments) and the sound perception abilities of the human auditory system. Humans, even without any kind of formal music training, are typically able to ex- tract, almost unconsciously, a great amount of relevant information from a musical signal. Features such as the beat of a musical piece, the main melody of a complex musical ar- rangement, the sound sources and events occurring in a complex musical mixture, the song structure (e.g. verse, chorus, bridge) and the musical genre of a piece, are just some examples of the level of knowledge that a naive listener is commonly able to extract just from listening to a musical piece. In order to do so, the human auditory system uses a variety of cues ...

Martins, Luis Gustavo — Universidade do Porto


Deep Learning Techniques for Visual Counting

The explosion of Deep Learning (DL) added a boost to the already rapidly developing field of Computer Vision to such a point that vision-based tasks are now parts of our everyday lives. Applications such as image classification, photo stylization, or face recognition are nowadays pervasive, as evidenced by the advent of modern systems trivially integrated into mobile applications. In this thesis, we investigated and enhanced the visual counting task, which automatically estimates the number of objects in still images or video frames. Recently, due to the growing interest in it, several Convolutional Neural Network (CNN)-based solutions have been suggested by the scientific community. These artificial neural networks, inspired by the organization of the animal visual cortex, provide a way to automatically learn effective representations from raw visual data and can be successfully employed to address typical challenges characterizing this task, ...

Ciampi Luca — University of Pisa


Interpretable Machine Learning for Machine Listening

Recent years have witnessed a significant interest in interpretable machine learning (IML) research that develops techniques to analyse machine learning (ML) models. Understanding ML models is essential to gain trust in their predictions and to improve datasets, model architectures and training techniques. The majority of effort in IML research has been in analysing models that classify images or structured data and comparatively less work exists that analyses models for other domains. This research focuses on developing novel IML methods and on extending existing methods to understand machine listening models that analyse audio. In particular, this thesis reports the results of three studies that apply three different IML methods to analyse five singing voice detection (SVD) models that predict singing voice activity in musical audio excerpts. The first study introduces SoundLIME (SLIME), a method to generate temporal, spectral or time-frequency explanations ...

Mishra, Saumitra — Queen Mary University of London


Multi-channel EMG pattern classification based on deep learning

In recent years, a huge body of data generated by various applications in domains like social networks and healthcare have paved the way for the development of high performance models. Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks. Combined with advancements in electromyography it has given rise to new hand gesture recognition applications, such as human computer interfaces, sign language recognition, robotics control and rehabilitation games. The purpose of this thesis is to develop novel methods for electromyography signal analysis based on deep learning for the problem of hand gesture recognition. Specifically, we focus on methods for data preparation and developing accurate models even when few data are available. Electromyography signals are in general one-dimensional time-series with a rich frequency content. Various feature sets have ...

Tsinganos, Panagiotis — University of Patras, Greece - Vrije Universiteit Brussel, Belgium


Discrete-time speech processing with application to emotion recognition

The subject of this PhD thesis is the efficient and robust processing and analysis of the audio recordings that are derived from a call center. The thesis is comprised of two parts. The first part is dedicated to dialogue/non-dialogue detection and to speaker segmentation. The systems that are developed are prerequisite for detecting (i) the audio segments that actually contain a dialogue between the system and the call center customer and (ii) the change points between the system and the customer. This way the volume of the audio recordings that need to be processed is significantly reduced, while the system is automated. To detect the presence of a dialogue several systems are developed. This is the first effort found in the international literature that the audio channel is exclusively exploited. Also, it is the first time that the speaker utterance ...

Kotti, Margarita — Aristotle University of Thessaloniki


Deep learning for semantic description of visual human traits

The recent progress in artificial neural networks (rebranded as “deep learning”) has significantly boosted the state-of-the-art in numerous domains of computer vision offering an opportunity to approach the problems which were hardly solvable with conventional machine learning. Thus, in the frame of this PhD study, we explore how deep learning techniques can help in the analysis of one the most basic and essential semantic traits revealed by a human face, namely, gender and age. In particular, two complementary problem settings are considered: (1) gender/age prediction from given face images, and (2) synthesis and editing of human faces with the required gender/age attributes. Convolutional Neural Network (CNN) has currently become a standard model for image-based object recognition in general, and therefore, is a natural choice for addressing the first of these two problems. However, our preliminary studies have shown that the ...

Antipov, Grigory — Télécom ParisTech (Eurecom)


Video Content Analysis by Active Learning

Advances in compression techniques, decreasing cost of storage, and high-speed transmission have facilitated the way videos are created, stored and distributed. As a consequence, videos are now being used in many applications areas. The increase in the amount of video data deployed and used in today's applications reveals not only the importance as multimedia data type, but also led to the requirement of efficient management of video data. This management paved the way for new research areas, such as indexing and retrieval of video with respect to their spatio-temporal, visual and semantic contents. This thesis presents work towards a unified framework for semi-automated video indexing and interactive retrieval. To create an efficient index, a set of representative key frames are selected which capture and encapsulate the entire video content. This is achieved by, firstly, segmenting the video into its constituent ...

Camara Chavez, Guillermo — Federal University of Minas Gerais


Representation Learning and Information Fusion: Applications in Biomedical Image Processing

In recent years Machine Learning and in particular Deep Learning have excelled in object recognition and classification tasks in computer vision. As these methods extract features from the data itself by learning features that are relevant for a particular task, a key aspect of this remarkable success is the amount of data on which these methods train. Biomedical applications face the problem that the amount of training data is limited. In particular, labels and annotations are usually scarce and expensive to obtain as they require biological or medical expertise. One way to overcome this issue is to use additional knowledge about the data at hand. This guidance can come from expert knowledge, which puts focus on specific, relevant characteristics in the images, or geometric priors which can be used to exploit the spatial relationships in the images. This thesis presents ...

Elisabeth Wetzer — Uppsala University


Deep Learning for i-Vector Speaker and Language Recognition

Over the last few years, i-vectors have been the state-of-the-art technique in speaker and language recognition. Recent advances in Deep Learning (DL) technology have improved the quality of i-vectors but the DL techniques in use are computationally expensive and need speaker or/and phonetic labels for the background data, which are not easily accessible in practice. On the other hand, the lack of speaker-labeled background data makes a big performance gap, in speaker recognition, between two well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector scoring techniques. It has recently been a challenge how to fill this gap without speaker labels, which are expensive in practice. Although some unsupervised clustering techniques are proposed to estimate the speaker labels, they cannot accurately estimate the labels. This thesis tries to solve the problems above by using the DL technology in different ways, without ...

Ghahabi, Omid — Universitat Politecnica de Catalunya


Contributions to Human Motion Modeling and Recognition using Non-intrusive Wearable Sensors

This thesis contributes to motion characterization through inertial and physiological signals captured by wearable devices and analyzed using signal processing and deep learning techniques. This research leverages the possibilities of motion analysis for three main applications: to know what physical activity a person is performing (Human Activity Recognition), to identify who is performing that motion (user identification) or know how the movement is being performed (motor anomaly detection). Most previous research has addressed human motion modeling using invasive sensors in contact with the user or intrusive sensors that modify the user’s behavior while performing an action (cameras or microphones). In this sense, wearable devices such as smartphones and smartwatches can collect motion signals from users during their daily lives in a less invasive or intrusive way. Recently, there has been an exponential increase in research focused on inertial-signal processing to ...

Gil-Martín, Manuel — Universidad Politécnica de Madrid


Identification of versions of the same musical composition by processing audio descriptions

Automatically making sense of digital information, and specially of music digital documents, is an important problem our modern society is facing. In fact, there are still many tasks that, although being easily performed by humans, cannot be effectively performed by a computer. In this work we focus on one of such tasks: the identification of musical piece versions (alternate renditions of the same musical composition like cover songs, live recordings, remixes, etc.). In particular, we adopt a computational approach solely based on the information provided by the audio signal. We propose a system for version identification that is robust to the main musical changes between versions, including timbre, tempo, key and structure changes. Such a system exploits nonlinear time series analysis tools and standard methods for quantitative music description, and it does not make use of a specific modeling strategy ...

Serra, Joan — Universitat Pompeu Fabra


A Geometric Deep Learning Approach to Sound Source Localization and Tracking

The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy ...

Diaz-Guerra, David — University of Zaragoza

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.