Super-Resolution Image Reconstruction Using Non-Linear Filtering Techniques

Super-resolution (SR) is a filtering technique that combines a sequence of under-sampled and degraded low-resolution images to produce an image at a higher resolution. The reconstruction takes advantage of the additional spatio-temporal data available in the sequence of images portraying the same scene. The fundamental problem addressed in super-resolution is a typical example of an inverse problem, wherein multiple low-resolution (LR)images are used to solve for the original high-resolution (HR) image. Super-resolution has already proved useful in many practical cases where multiple frames of the same scene can be obtained, including medical applications, satellite imaging and astronomical observatories. The application of super resolution filtering in consumer cameras and mobile devices shall be possible in the future, especially that the computational and memory resources in these devices are increasing all the time. For that goal, several research problems need to be ...

Trimeche, Mejdi — Tampere University of Technology


Unsupervised and semi-supervised Non-negative Matrix Factorization methods for brain tumor segmentation using multi-parametric MRI data

Gliomas represent about 80% of all malignant primary brain tumors. Despite recent advancements in glioma research, patient outcome remains poor. The 5 year survival rate of the most common and most malignant subtype, i.e. glioblastoma, is about 5%. Magnetic resonance imaging (MRI) has become the imaging modality of choice in the management of brain tumor patients. Conventional MRI (cMRI) provides excellent soft tissue contrast without exposing the patient to potentially harmful ionizing radiation. Over the past decade, advanced MRI modalities, such as perfusion-weighted imaging (PWI), diffusion-weighted imaging (DWI) and magnetic resonance spectroscopic imaging (MRSI) have gained interest in the clinical field, and their added value regarding brain tumor diagnosis, treatment planning and follow-up has been recognized. Tumor segmentation involves the imaging-based delineation of a tumor and its subcompartments. In gliomas, segmentation plays an important role in treatment planning as well ...

Sauwen, Nicolas — KU Leuven


Classification of brain tumors based on magnetic resonance spectroscopy

Nowadays, diagnosis and treatment of brain tumors is based on clinical symptoms, radiological appearance, and often histopathology. Magnetic resonance imaging (MRI) is a major noninvasive tool for the anatomical assessment of tumors in the brain. However, several diagnostic questions, such as the type and grade of the tumor, are difficult to address using MRI. The histopathology of a tissue specimen remains the gold standard, despite the associated risks of surgery to obtain a biopsy. In recent years, the use of magnetic resonance spectroscopy (MRS), which provides a metabolic profile, has gained a lot of interest for a more detailed and specific noninvasive evaluation of brain tumors. In particular, magnetic resonance spectroscopic imaging (MRSI) is attractive as this may also enable to visualize the heterogeneous spatial extent of tumors, both inside and outside the MRI detectable lesion. As manual, individual, viewing ...

Luts, Jan — Katholieke Universiteit Leuven


Spatiotonal Adaptivity in Super-Resolution of under-sampled Image Sequences

This thesis concerns the use of spatial and tonal adaptivity in improving the resolution of aliased image sequences under scene or camera motion. Each of the five content chapters focuses on a different subtopic of super-resolution: image registration (chapter 2), image fusion (chapter 3 and 4), super-resolution restoration (chapter 5), and super-resolution synthesis (chapter 6). Chapter 2 derives the Cramer-Rao lower bound of image registration and shows that iterative gradient-based estimators achieve this performance limit. Chapter 3 presents an algorithm for image fusion of irregularly sampled and uncertain data using robust normalized convolution. The size and shape of the fusion kernel is adapted to local curvilinear structures in the image. Each data sample is assigned an intensity-related certainty value to limit the influence of outliers. Chapter 4 presents two fast implementations of the signal-adaptive bilateral filter. The xy-separable implementation filters ...

Pham, Tuan Q. — Delft University of Technology


Advanced signal processing for magnetic resonance spectroscopy

Assertive diagnosis of cancer, Alzheimer’s disease, epilepsy and other metabolic diseases is essential to provide patients with the adequate treatment. Recently, different invasive and non-invasive techniques have been developed for this purpose, nevertheless, due to their harmless properties the non-invasive techniques have gained more value. Magnetic Resonance is a well-known non-invasive technique that provides spectra (metabolite peaks) and images (anatomical structures) of the examined tissue. In Magnetic Resonance Spectroscopy (MRS), molecules containing certain excitable nuclei, such as 1H, provide the metabolite information. As a consequence, the peaks in the MR spectra correspond to observable metabolites which are the biomarkers of diseases. Finally, metabolite concentrations are computed and compared against normal values in order to establish the diagnosis. The method to obtain such amplitudes is also called quantification and its accuracy is essential for diagnosis assessment. Quantification of MRS signals is ...

Osorio Garcia, Maria Isabel — KU Leuven


Machine learning methods for multiple sclerosis classification and prediction using MRI brain connectivity

In this thesis, the power of Machine Learning (ML) algorithms is combined with brain connectivity patterns, using Magnetic Resonance Imaging (MRI), for classification and prediction of Multiple Sclerosis (MS). White Matter (WM) as well as Grey Matter (GM) graphs are studied as connectome data types. The thesis addresses three main research objectives. The first objective aims to generate realistic brain connectomes data for improving the classification of MS clinical profiles in cases of data scarcity and class imbalance. To solve the problem of limited and imbalanced data, a Generative Adversarial Network (GAN) was developed for the generation of realistic and biologically meaningful connec- tomes. This network achieved a 10% better MS classification performance compared to classical approaches. As second research objective, we aim to improve classification of MS clinical profiles us- ing morphological features only extracted from GM brain tissue. ...

Barile, Berardino — KU Leuven


Automated Face Recognition from Low-resolution Imagery

Recently, significant advances in the field of automated face recognition have been achieved using computer vision, machine learning, and deep learning methodologies. However, despite claims of super-human performance of face recognition algorithms on select key benchmark tasks, there remain several open problems that preclude the general replacement of human face recognition work with automated systems. State-of-the-art automated face recognition systems based on deep learning methods are able to achieve high accuracy when the face images they are tasked with recognizing subjects from are of sufficiently high quality. However, low image resolution remains one of the principal obstacles to face recognition systems, and their performance in the low-resolution regime is decidedly below human capabilities. In this PhD thesis, we present a systematic study of modern automated face recognition systems in the presence of image degradation in various forms. Based on our ...

Grm, Klemen — University of Ljubljana


General Approaches for Solving Inverse Problems with Arbitrary Signal Models

Ill-posed inverse problems appear in many signal and image processing applications, such as deblurring, super-resolution and compressed sensing. The common approach to address them is to design a specific algorithm, or recently, a specific deep neural network, for each problem. Both signal processing and machine learning tactics have drawbacks: traditional reconstruction strategies exhibit limited performance for complex signals, such as natural images, due to the hardness of their mathematical modeling; while modern works that circumvent signal modeling by training deep convolutional neural networks (CNNs) suffer from a huge performance drop when the observation model used in training is inexact. In this work, we develop and analyze reconstruction algorithms that are not restricted to a specific signal model and are able to handle different observation models. Our main contributions include: (a) We generalize the popular sparsity-based CoSaMP algorithm to any signal ...

Tirer, Tom — Tel Aviv University


Unsupervised Models for White Matter Fiber-Bundles Analysis in Multiple Sclerosis

Diffusion Magnetic Resonance Imaging (dMRI) is a meaningful technique for white matter (WM) fiber-tracking and microstructural characterization of axonal/neuronal integrity and connectivity. By measuring water molecules motion in the three directions of space, numerous parametric maps can be reconstructed. Among these, fractional anisotropy (FA), mean diffusivity (MD), and axial (λa) and radial (λr) diffusivities have extensively been used to investigate brain diseases. Overall, these findings demonstrated that WM and grey matter (GM) tissues are subjected to numerous microstructural alterations in multiple sclerosis (MS). However, it remains unclear whether these tissue alterations result from global processes, such as inflammatory cascades and/or neurodegenerative mechanisms, or local inflammatory and/or demyelinating lesions. Furthermore, these pathological events may occur along afferent or afferent WM fiber pathways, leading to antero- or retrograde degeneration. Thus, for a better understanding of MS pathological processes like its spatial and ...

Stamile, Claudio — Université Claude Bernard Lyon 1, KU Leuven


Tissue Characterisation from Intravascular Ultrasound using Texture Analysis

Intravascular ultrasound has, over the past decade, significantly changed the clinical diagnosis and therapeutic strategy of coronary and vascular disease assessment, as it not only allows visualisation of the vessel lumen, but gives a unique view of the pathophysiologic structure of the artery wall. This information is currently unavailable from the universally accepted instrument for artery assessment, angiography, which has on several occasions had its diagnostic accuracy questioned. With intravascular ultrasound, there is the potential to categorise diseased arterial tissue belonging to distinct pathological groups which can ultimately aid in the understanding of individual lesions as well as making a significant contribution to treatment choice and management of cardiac patients. The high resolution image information offered by intravascular ultrasound provides excellent crosssectional views of coronary artery disease at the level of the disease process itself. This information can be used ...

Nailon, William Henry — University Of Edinburgh


Numerical Approaches for Solving the Combined Reconstruction and Registration of Digital Breast Tomosynthesis

Heavy demands on the development of medical imaging modalities for breast cancer detection have been witnessed in the last three decades in an attempt to reduce the mortality associated with the disease. Recently, Digital Breast Tomosynthesis (DBT) shows its promising in the early diagnosis when lesions are small. In particular, it offers potential benefits over X-ray mammography - the current modality of choice for breast screening - of increased sensitivity and specificity for comparable X-ray dose, speed, and cost. An important feature of DBT is that it provides a pseudo-3D image of the breast. This is of particular relevance for heterogeneous dense breasts of young women, which can inhibit detection of cancer using conventional mammography. In the same way that it is difficult to see a bird from the edge of the forest, detecting cancer in a conventional 2D mammogram ...

Yang, Guang — University College London


Bayesian Fusion of Multi-band Images: A Powerful Tool for Super-resolution

Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne ...

Wei, Qi — University of Toulouse


Optimal estimation of diffusion MRI parameters

Diffusion magnetic resonance imaging (dMRI) is currently the method of choice for the in vivo and non-invasive quantification of water diffusion in biological tissue. Several diffusion models have been proposed to obtain quantitative diffusion parameters, which have shown to provide novel information on the structural and organizational features of biological tissue, the brain white matter in particular. The goal of this dissertation is to improve the accuracy of the diffusion parameter estimation, given the non-Gaussian nature of the diffusion-weighted MR data. In part I of this manuscript, the necessary basics of dMRI are provided. Next, Part II deals with diffusion parameter estimation and includes the main contributions of the research. Finally, Part III covers the construction of a population-based dMRI atlas of the rat brain.

Veraart, Jelle — University of Antwerp


Robust Signal Processing with Applications to Positioning and Imaging

This dissertation investigates robust signal processing and machine learning techniques, with the objective of improving the robustness of two applications against various threats, namely Global Navigation Satellite System (GNSS) based positioning and satellite imaging. GNSS technology is widely used in different fields, such as autonomous navigation, asset tracking, or smartphone positioning, while the satellite imaging plays a central role in monitoring, detecting and estimating the intensity of key natural phenomena, such as flooding prediction and earthquake detection. Considering the use of both GNSS positioning and satellite imaging in critical and safety-of-life applications, it is necessary to protect those two technologies from either intentional or unintentional threats. In the real world, the common threats to GNSS technology include multipath propagation and intentional/unintentional interferences. This thesis investigates methods to mitigate the influence of such sources of error, with the final objective of ...

Li, Haoqing — Northeastern University


Sparse Signal Recovery From Incomplete And Perturbed Data

Sparse signal recovery consists of algorithms that are able to recover undersampled high dimensional signals accurately. These algorithms require fewer measurements than traditional Shannon/Nyquist sampling theorem demands. Sparse signal recovery has found many applications including magnetic resonance imaging, electromagnetic inverse scattering, radar/sonar imaging, seismic data collection, sensor array processing and channel estimation. The focus of this thesis is on electromagentic inverse scattering problem and joint estimation of the frequency offset and the channel impulse response in OFDM. In the electromagnetic inverse scattering problem, the aim is to find the electromagnetic properties of unknown targets from measured scattered field. The reconstruction of closely placed point-like objects is investigated. The application of the greedy pursuit based sparse recovery methods, OMP and FTB-OMP, is proposed for increasing the reconstruction resolution. The performances of the proposed methods are compared against NESTA and MT-BCS methods. ...

Senyuva, Rifat Volkan — Bogazici University

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.