Spatial features of reverberant speech: estimation and application to recognition and diarization (2016)
Speech derereverberation in noisy environments using time-frequency domain signal models
Reverberation is the sum of reflected sound waves and is present in any conventional room. Speech communication devices such as mobile phones in hands-free mode, tablets, smart TVs, teleconferencing systems, hearing aids, voice-controlled systems, etc. use one or more microphones to pick up the desired speech signals. When the microphones are not in the proximity of the desired source, strong reverberation and noise can degrade the signal quality at the microphones and can impair the intelligibility and the performance of automatic speech recognizers. Therefore, it is a highly demanded task to process the microphone signals such that reverberation and noise are reduced. The process of reducing or removing reverberation from recorded signals is called dereverberation. As dereverberation is usually a completely blind problem, where the only available information are the microphone signals, and as the acoustic scenario can be non-stationary, ...
Braun, Sebastian — Friedrich-Alexander Universität Erlangen-Nürnberg
A multimicrophone approach to speech processing in a smart-room environment
Recent advances in computer technology and speech and language processing have made possible that some new ways of person-machine communication and computer assistance to human activities start to appear feasible. Concretely, the interest on the development of new challenging applications in indoor environments equipped with multiple multimodal sensors, also known as smart-rooms, has considerably grown. In general, it is well-known that the quality of speech signals captured by microphones that can be located several meters away from the speakers is severely distorted by acoustic noise and room reverberation. In the context of the development of hands-free speech applications in smart-room environments, the use of obtrusive sensors like close-talking microphones is usually not allowed, and consequently, speech technologies must operate on the basis of distant-talking recordings. In such conditions, speech technologies that usually perform reasonably well in free of noise and ...
Abad, Alberto — Universitat Politecnica de Catalunya
Non-intrusive Quality Evaluation of Speech Processed in Noisy and Reverberant Environments
In many speech applications such as hands-free telephony or voice-controlled home assistants, the distance between the user and the recording microphones can be relatively large. In such a far-field scenario, the recorded microphone signals are typically corrupted by noise and reverberation, which may severely degrade the performance of speech recognition systems and reduce intelligibility and quality of speech in communication applications. In order to limit these effects, speech enhancement algorithms are typically applied. The main objective of this thesis is to develop novel speech enhancement algorithms for noisy and reverberant environments and signal-based measures to evaluate these algorithms, focusing on solutions that are applicable in realistic scenarios. First, we propose a single-channel speech enhancement algorithm for joint noise and reverberation reduction. The proposed algorithm uses a spectral gain to enhance the input signal, where the gain is computed using a ...
Cauchi, Benjamin — University of Oldenburg
A Multimodal Approach to Audiovisual Text-to-Speech Synthesis
Speech, consisting of an auditory and a visual signal, has always been the most important means of communication between humans. It is well known that an optimal conveyance of the message requires that both the auditory and the visual speech signal can be perceived by the receiver. Nowadays people interact countless times with computer systems in every-day situations. Since the ultimate goal is to make this interaction feel completely natural and familiar, the most optimal way to interact with a computer system is by means of speech. Similar to the speech communication between humans, the most appropriate human-machine interaction consists of audiovisual speech signals. In order to allow the computer system to transfer a spoken message towards its users, an audiovisual speech synthesizer is needed to generate novel audiovisual speech signals based on a given text. This dissertation focuses on ...
Mattheyses, Wesley — Vrije Universiteit Brussel
Artificial Bandwidth Extension of Telephone Speech Signals Using Phonetic A Priori Knowledge
The narrowband frequency range of telephone speech signals originally caused by former analog transmission techniques still leads to frequent acoustical limitations in today’s digital telephony systems. It provokes muffled sounding phone calls with reduced speech intelligibility and quality. By means of artificial speech bandwidth extension approaches, missing frequency components can be estimated and reconstructed. However, the artificially extended speech bandwidth typically suffers from annoying artifacts. Particularly susceptible to this are the fricatives /s/ and /z/. They can hardly be estimated based on the narrowband spectrum and are therefore easily confusable with other phonemes as well as speech pauses. This work takes advantage of phonetic a priori knowledge to optimize the performance of artificial bandwidth extension. Both the offline training part conducted in advance and the main processing part performed later on shall be thereby provided with important phoneme information. As ...
Bauer, Patrick Marcel — Institute for Communications Technology, Technical University Braunschweig
Spherical Microphone Array Processing for Acoustic Parameter Estimation and Signal Enhancement
In many distant speech acquisition scenarios, such as hands-free telephony or teleconferencing, the desired speech signal is corrupted by noise and reverberation. This degrades both the speech quality and intelligibility, making communication difficult or even impossible. Speech enhancement techniques seek to mitigate these effects and extract the desired speech signal. This objective is commonly achieved through the use of microphone arrays, which take advantage of the spatial properties of the sound field in order to reduce noise and reverberation. Spherical microphone arrays, where the microphones are arranged in a spherical configuration, usually mounted on a rigid baffle, are able to analyze the sound field in three dimensions; the captured sound field can then be efficiently described in the spherical harmonic domain (SHD). In this thesis, a number of novel spherical array processing algorithms are proposed, based in the SHD. In ...
Jarrett, Daniel P. — Imperial College London
Sparse Multi-Channel Linear Prediction for Blind Speech Dereverberation
In many speech communication applications, such as hands-free telephony and hearing aids, the microphones are located at a distance from the speaker. Therefore, in addition to the desired speech signal, the microphone signals typically contain undesired reverberation and noise, caused by acoustic reflections and undesired sound sources. Since these disturbances tend to degrade the quality of speech communication, decrease speech intelligibility and negatively affect speech recognition, efficient dereverberation and denoising methods are required. This thesis deals with blind dereverberation methods, not requiring any knowledge about the room impulse responses between the speaker and the microphones. More specifically, we propose a general framework for blind speech dereverberation based on multi-channel linear prediction (MCLP) and exploiting sparsity of the speech signal in the time-frequency domain.
Jukić, Ante — University of Oldenburg
Speech signals carry important information about a speaker such as age, gender, language, accent and emotional/psychological state. Automatic recognition of speaker characteristics has a wide range of commercial, medical and forensic applications such as interactive voice response systems, service customization, natural human-machine interaction, recognizing the type of pathology of speakers, and directing the forensic investigation process. This research aims to develop accurate methods and tools to identify different physical characteristics of the speakers. Due to the lack of required databases, among all characteristics of speakers, our experiments cover gender recognition, age estimation, language recognition and accent/dialect identification. However, similar approaches and techniques can be applied to identify other characteristics such as emotional/psychological state. For speaker characterization, we first convert variable-duration speech signals into fixed-dimensional vectors suitable for classification/regression algorithms. This is performed by fitting a probability density function to acoustic ...
Bahari, Mohamad Hasan — KU Leuven
Spatio-Temporal Speech Enhancement in Adverse Acoustic Conditions
Never before has speech been captured as often by electronic devices equipped with one or multiple microphones, serving a variety of applications. It is the key aspect in digital telephony, hearing devices, and voice-driven human-to-machine interaction. When speech is recorded, the microphones also capture a variety of further, undesired sound components due to adverse acoustic conditions. Interfering speech, background noise and reverberation, i.e. the persistence of sound in a room after excitation caused by a multitude of reflections on the room enclosure, are detrimental to the quality and intelligibility of target speech as well as the performance of automatic speech recognition. Hence, speech enhancement aiming at estimating the early target-speech component, which contains the direct component and early reflections, is crucial to nearly all speech-related applications presently available. In this thesis, we compare, propose and evaluate existing and novel approaches ...
Dietzen, Thomas — KU Leuven
Deep Learning for Distant Speech Recognition
Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. ...
Ravanelli, Mirco — Fondazione Bruno Kessler
Reverberation consists of a complex acoustic phenomenon that occurs inside rooms. Many audio signal processing methods, addressing source localization, signal enhancement and other tasks, often assume absence of reverberation. Consequently, reverberant environments are considered challenging as state-ofthe-art methods can perform poorly. The acoustics of a room can be described using a variety of mathematical models, among which, physical models are the most complete and accurate. The use of physical models in audio signal processing methods is often non-trivial since it can lead to ill-posed inverse problems. These inverse problems require proper regularization to achieve meaningful results and involve the solution of computationally intensive large-scale optimization problems. Recently, however, sparse regularization has been applied successfully to inverse problems arising in different scientific areas. The increased computational power of modern computers and the development of new efficient optimization algorithms makes it possible ...
Antonello, Niccolò — KU Leuven
Feedback Delay Networks in Artificial Reverberation and Reverberation Enhancement
In today's audio production and reproduction as well as in music performance practices it has become common practice to alter reverberation artificially through electronics or electro-acoustics. For music productions, radio plays, and movie soundtracks, the sound is often captured in small studio spaces with little to no reverberation to save real estate and to ensure a controlled environment such that the artistically intended spatial impression can be added during post-production. Spatial sound reproduction systems require flexible adjustment of artificial reverberation to the diffuse sound portion to help the reconstruction of the spatial impression. Many modern performance spaces are multi-purpose, and the reverberation needs to be adjustable to the desired performance style. Employing electro-acoustic feedback, also known as Reverberation Enhancement Systems (RESs), it is possible to extend the physical to the desired reverberation. These examples demonstrate a wide range of applications ...
Schlecht, Sebastian Jiro — Friedrich-Alexander-Universität Erlangen-Nürnberg
Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments
The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...
Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg
Dereverberation and noise reduction techniques based on acoustic multi-channel equalization
In many hands-free speech communication applications such as teleconferencing or voice-controlled applications, the recorded microphone signals do not only contain the desired speech signal, but also attenuated and delayed copies of the desired speech signal due to reverberation as well as additive background noise. Reverberation and background noise cause a signal degradation which can impair speech intelligibility and decrease the performance for many signal processing techniques. Acoustic multi-channel equalization techniques, which aim at inverting or reshaping the measured or estimated room impulse responses between the speech source and the microphone array, comprise an attractive approach to speech dereverberation since in theory perfect dereverberation can be achieved. However in practice, such techniques suffer from several drawbacks, such as uncontrolled perceptual effects, sensitivity to perturbations in the measured or estimated room impulse responses, and background noise amplification. The aim of this thesis ...
Kodrasi, Ina — University of Oldenburg
Identifying the target speaker in hearing aid applications is an essential ingredient to improve speech intelligibility. Although several speech enhancement algorithms are available to reduce background noise or to perform source separation in multi-speaker scenarios, their performance depends on correctly identifying the target speaker to be enhanced. Recent advances in electroencephalography (EEG) have shown that it is possible to identify the target speaker which the listener is attending to using single-trial EEG-based auditory attention decoding (AAD) methods. However, in realistic acoustic environments the AAD performance is influenced by undesired disturbances such as interfering speakers, noise and reverberation. In addition, it is important for real-world hearing aid applications to close the AAD loop by presenting on-line auditory feedback. This thesis deals with the problem of identifying and enhancing the target speaker in realistic acoustic environments based on decoding the auditory attention ...
Aroudi, Ali — University of Oldenburg, Germany
The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.
The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.