MIMO Designs for filter bank multicarrier and multiantenna systems based on OQAM

From the perspective of increasingly data rate requirements in mobile communications, it is deemed necessary to do further research so that the future goals can be reached. To that end, the radio-based communications are resorting to multicarrier modulations and spatial diversity. Until today, the orthogonal frequency division multiplexing (OFDM) modulation is regarded as the dominant technology. On one hand, the OFDM modulation is able to accommodate multiantenna configurations in a very straightforward manner. On the other hand, the poor stopband attenuation exhibited by the OFDM modulation, highlights that a definitely tight synchronization is required. In addition, the cyclic prefix (CP) has to be sufficiently long to avoid inter-block interference, which may substantially reduce the spectral efficiency. In order to overcome the OFDM drawbacks, the filter bank multicarrier modulation based on OQAM (FBMC/OQAM) is introduced. This modulation does not need any ...

López, Màrius Caus — Universitat Politècnica de Catalunya (UPC)


Tensor Decompositions and Algorithms for Efficient Multidimensional Signal Processing

Due to the extensive growth of big data applications, the widespread use of multisensor technologies, and the need for efficient data representations, multidimensional techniques are a primary tool for many signal processing applications. Multidimensional arrays or tensors allow a natural representation of high-dimensional data. Therefore, they are particularly suited for tasks involving multi-modal data sources such as biomedical sensor readings or multiple-input and multiple-output (MIMO) antenna arrays. While tensor-based techniques were still in their infancy several decades ago, nowadays, they have already proven their effectiveness in various applications. There are many different tensor decompositions in the literature, and each finds use in diverse signal processing fields. In this thesis, we focus on two tensor factorization models: the rank-(Lr,Lr,1) Block-Term Decomposition (BTD) and the Multilinear Generalized Singular Value Decomposition (ML-GSVD) that we propose in this thesis. The ML-GSVD is an extension ...

Khamidullina, Liana — Technische Universität Ilmenau


Advanced Signal Processing Concepts for Multi-Dimensional Communication Systems

The widespread use of mobile internet and smart applications has led to an explosive growth in mobile data traffic. With the rise of smart homes, smart buildings, and smart cities, this demand is ever growing since future communication systems will require the integration of multiple networks serving diverse sectors, domains and applications, such as multimedia, virtual or augmented reality, machine-to-machine (M2M) communication / the Internet of things (IoT), automotive applications, and many more. Therefore, in the future, the communication systems will not only be required to provide Gbps wireless connectivity but also fulfill other requirements such as low latency and massive machine type connectivity while ensuring the quality of service. Without significant technological advances to increase the system capacity, the existing telecommunications infrastructure will be unable to support these multi-dimensional requirements. This poses an important demand for suitable waveforms with ...

Cheema, Sher Ali — Technische Universität Ilmenau


Coexistence of Communication Systems Based on Enhanced Multi-Carrier Waveforms with Legacy OFDM Networks

Future wireless networks are envisioned to accommodate the heterogeneous needs of entirely different systems. New services obeying various constraints will coexist with legacy cellular users in the same frequency band. This coexistence is hardly achievable with OFDM, the physical layer used by current systems, because of its poor spectral containment. Thus, a myriad of multi-carrier waveforms with enhanced spectral localization have been proposed for future wireless devices. In this thesis, we investigate the coexistence of new systems based on these waveforms with legacy OFDM users. We provide the first theoretical and experimental analysis of the inter-system interference that arises in those scenarii. Then, we apply this analysis to evaluate the merits of different enhanced waveforms and we finally investigate the performance achievable by a network composed of legacy OFDM cellular users and D2D pairs using one of the studied enhanced ...

Quentin Bodinier — Université of Rennes 1 (UR1) and CentraleSupélec (CS)


Performance Enhancement for Filter Bank Multicarrier Methods in Multi-Antenna Wireless Communication Systems

This thesis investigates filter bank based multicarrier modulation using offset quadrature amplitude modulation (FBMC/OQAM), which is characterised by a critically sampled FBMC system that achieves full spectral efficiency in the sense of being free of redundancy. As a starting point, a performance comparison between FBMC/OQAM and oversampled (OS) FBMC systems is made in terms of per-subband fractionally spaced equalisation in order to compensate for the transmission distortions caused by dispersive channels. Simulation results show the reduced performance in equalising FBMC/OQAM compared to OS-FBMC, where the advantage for the latter stems from the use of guard bands. Alternatively, the inferior performance of FBMC/OQAM can be assigned to the inability of a per-subband equaliser to address the problem of potential intercarrier interference (ICI) in this system. The FBMC/OQAM system is analysed by representing the equivalent transmultiplexed channel including the filter banks as ...

Nagy, Amr — University of Strathclyde


Advanced Interference Suppression Techniques for Spread Spectrum Systems

Code division multiple access (CDMA) techniques have been widely employed by different wireless systems with many advantages. However, the performance of these systems is limited by interference. A number of different interference suppression techniques have been proposed, including multiuser detection, beamforming, adaptive supervised and blind algorithms, and transmit processing techniques requiring a limited feedback channel. Recently, CDMA techniques have also been combined with multicarrier and multiantenna schemes to further increase the system capacity and performance. This thesis investigates the existing algorithms and structures and proposes novel interference suppression algorithms for spread spectrum systems. Firstly we investigate blind constrained constant modulus (CCM) stochastic gradient (SG) receivers with a low-complexity variable step-size mechanism for downlink direct sequence CDMA (DS-CDMA) systems. This algorithm provides better performance than existing blind schemes in non-stationary scenarios. Convergence and tracking analyses of the proposed adaptation techniques are ...

Yunlong Cai — University of York


Advanced Algebraic Concepts for Efficient Multi-Channel Signal Processing

Modern society is undergoing a fundamental change in the way we interact with technology. More and more devices are becoming "smart" by gaining advanced computation capabilities and communication interfaces, from household appliances over transportation systems to large-scale networks like the power grid. Recording, processing, and exchanging digital information is thus becoming increasingly important. As a growing share of devices is nowadays mobile and hence battery-powered, a particular interest in efficient digital signal processing techniques emerges. This thesis contributes to this goal by demonstrating methods for finding efficient algebraic solutions to various applications of multi-channel digital signal processing. These may not always result in the best possible system performance. However, they often come close while being significantly simpler to describe and to implement. The simpler description facilitates a thorough analysis of their performance which is crucial to design robust and reliable ...

Roemer, Florian — Ilmenau University of Technology


Impairments in coordinated cellular networks: analysis, impact on performance and mitigation

Base station cooperation is recognized as a key technology for future wireless cellular communication networks. Considering antennas of distributed base stations and those of multiple terminals within those cells as a distributed multiple-input multiple-output (MIMO) system, this technique has the potential to eliminate inter-cell interference by joint signal processing and to enhance spectral efficiency in this way. Although the theoretical gains are meanwhile well-understood, it still remains challenging to realize the full potential of such cooperative schemes in real-world systems. Among other factors, such as the limited overhead for pilot symbols and for the feedback and backhaul, these performance limitations are related to channel and synchronization impairments, such as channel estimation, feedback quantization and channel aging, as well as imperfect carrier and sampling synchronization among the base stations. Because of these impairments, joint data precoding results to be mismatched with ...

Manolakis, Konstantinos — Technische Universität Berlin


Large Multiuser MIMO Detection: Algorithms and Architectures

After decades of research on multiple-input multiple-output (MIMO) technology, including paradigm shifts from point-to-point to multiuser MIMO (MU-MIMO), an ample literature exists on techniques to exploit the spatial dimension to increase link throughput and network capacity of wireless communication systems. Massive MIMO, which supports hundreds of antennas at the base station (BS), is celebrated as the key enabling technology of the upcoming fifth generation (5G) wireless communication standard. However, the use of large MIMO systems in the future is also indispensable, especially for high-speed wireless backhaul connectivity. Large MIMO systems use tens of antennas in communication terminals, and can afford a large number of antennas on both the transmitter and the receiver sides. While favorable propagation in massive MIMO ensures that reliable performance can be achieved by simple linear processing, the inherent symmetry in large MIMO renders the computational complexity ...

Sarieddeen, Hadi — American University of Beirut (AUB)


Limited Feedback Transceiver Design for Downlink MIMO OFDM Cellular Networks

Feedback in wireless communications is tied to a long-standing and successful history, facilitating robust and spectrally efficient transmission over the uncertain wireless medium. Since the application of multiple antennas at both ends of the communication link, enabling multiple-input multiple-output (MIMO) transmission, the importance of feedback information to achieve the highest performance is even more pronounced. Especially when multiple antennas are employed by the transmitter to handle the interference between multiple users, channel state information (CSI) is a fundamental prerequisite. The corresponding multi-user MIMO, interference alignment and coordination techniques are considered as a central part of future cellular networks to cope with the growing inter-cell-interference, caused by the unavoidable densification of base stations to support the exponentially increasing demand on network capacities. However, this vision can only be implemented with efficient feedback algorithms that provide accurate CSI at the transmitter without ...

Schwarz, Stefan — Vienna University of Technology


Competition, Coexistence, and Confidentiality in Multiuser Multi-antenna Wireless Networks

Competition for limited bandwidth, power, and time resources is an intrinsic aspect of multi-user wireless networks. There has been a recent move towards optimizing coexistence and confidentiality at the physical layer of multi-user wireless networks, mainly by exploiting the advanced capabilities of multiple-input multiple-out (MIMO) signal processing methods. Coexistence of disparate networks is made possible via interference mitigation and suppression, and is exemplified by the current interest in cognitive radio (CR) systems. On the other hand, MIMO communications that are secure at the physical layer without depending upon network-layer encryption are achieved by redirecting jamming or multi-user interference to unauthorized receivers, while minimizing that to legitimate receivers. In all cases, the accuracy of the channel state information (CSI) available at the transmitters plays a crucial role in determining the degree of interference mitigation and confidentiality that is achieved. This dissertation ...

Mukherjee, Amitav — University of California Irvine


Massive MIMO: Fundamentals and System Designs

The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input-multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology ...

Ngo, Quoc Hien — Linköping University


Multiple-Antenna Systems: From Generic to Hardware-Informed Precoding Designs

5G-and-beyond communication systems are expected to be in a heterogeneous form of multiple-antenna cellular base stations (BSs) overlaid with small cells. The fully-digital BS structures can incur significant power consumption and hardware complexity. Moreover, the wireless BSs for small cells usually have strict size constraints, which incur additional hardware effects such as mutual coupling (MC). Consequently, the transmission techniques designed for future wireless communication systems should respect the hardware structures at the BSs. For this reason, in this thesis we extend generic downlink precoding to more advanced hardware-informed transmission techniques for a variety of BS structures. This thesis firstly extends the vector perturbation (VP) precoding to multiple-modulation scenarios, where existing VP-based techniques are sub-optimal. Subsequently, this thesis focuses on the downlink transmission designs for hardware effects in the form of MC, limited number of radio frequency (RF) chains, and low-precision ...

LI, ANG — University College London


Cooperative Techniques for Interference Management in Wireless Networks

In the last few years, wireless devices have evolved to unimaginable heights. Current forecasts suggest that, in the near future, every device that may take advantage of a wireless connection will have one. In addition, there is a gradual migration to smart devices and high-speed connections, and, as a consequence, the overall mobile traffic is expected to experience a tremendous growth in the next years. The multiuser interference will hence become the main limiting factor and the most critical point to address. As instrumental to efficiently manage interference between different systems, this thesis provides a thorough study on cooperative techniques. That is, users share information and exploit it to improve the overall performance. Since multiuser cooperation represents a very broad term, we will focus on algorithm design and transceiver optimization for three cooperative scenarios that capture some of the main ...

Lameiro, Christian — University of Cantabria


Study and optimization of multi-antenna systems associated with multicarrier modulations

Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...

LE NIR, Vincent — INSA de Rennes

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.