Antenna Array Processing: Autocalibration and Fast High-Resolution Methods for Automotive Radar

In this thesis, advanced techniques for antenna array processing are addressed. The problem of autocalibration is considered and a novel method for a two-dimensional array is developed. Moreover, practicable methods for high-resolution direction-of-arrival (DOA) estimation and detection in automotive radar are proposed. A precise model of the array response is required to maintain the performance of DOA estimation. When the sensor environment is time-varying, this can only be achieved with autocalibration. The fundamental problem of autocalibration of an unknown phase response for uniform rectangular arrays is considered. For the case with a single source, a simple and robust least squares algorithm for joint two-dimensional DOA estimation and phase calibration is developed. An identification problem is determined and a suitable constraint is proposed. Simulation results show that the performance of the proposed estimator is close to the approximate CRB for both ...

Heidenreich, Philipp — Technische Universität Darmstadt


Multi-microphone noise reduction and dereverberation techniques for speech applications

In typical speech communication applications, such as hands-free mobile telephony, voice-controlled systems and hearing aids, the recorded microphone signals are corrupted by background noise, room reverberation and far-end echo signals. This signal degradation can lead to total unintelligibility of the speech signal and decreases the performance of automatic speech recognition systems. In this thesis several multi-microphone noise reduction and dereverberation techniques are developed. In Part I we present a Generalised Singular Value Decomposition (GSVD) based optimal filtering technique for enhancing multi-microphone speech signals which are degraded by additive coloured noise. Several techniques are presented for reducing the computational complexity and we show that the GSVD-based optimal filtering technique can be integrated into a `Generalised Sidelobe Canceller' type structure. Simulations show that the GSVD-based optimal filtering technique achieves a larger signal-to-noise ratio improvement than standard fixed and adaptive beamforming techniques and ...

Doclo, Simon — Katholieke Universiteit Leuven


Robust Direction-of-Arrival estimation and spatial filtering in noisy and reverberant environments

The advent of multi-microphone setups on a plethora of commercial devices in recent years has generated a newfound interest in the development of robust microphone array signal processing methods. These methods are generally used to either estimate parameters associated with acoustic scene or to extract signal(s) of interest. In most practical scenarios, the sources are located in the far-field of a microphone array where the main spatial information of interest is the direction-of-arrival (DOA) of the plane waves originating from the source positions. The focus of this thesis is to incorporate robustness against either lack of or imperfect/erroneous information regarding the DOAs of the sound sources within a microphone array signal processing framework. The DOAs of sound sources is by itself important information, however, it is most often used as a parameter for a subsequent processing method. One of the ...

Chakrabarty, Soumitro — Friedrich-Alexander Universität Erlangen-Nürnberg


Antenna Arrays for Multipath and Interference Mitigation in GNSS Receivers

This thesis deals with the synchronization of one or several replicas of a known signal received in a scenario with multipath propagation and directional interference. A connecting theme along this work is the systematic application of the maximum likelihood (ML) principle together with a signal model in which the spatial signatures are unstructured and the noise term is Gaussian- distributed with an unknown correlation matrix. This last assumption is key in obtaining estimators that are capable of mitigating the disturbing signals that exhibit a certain structure, and this is achieved without resorting to the estimation of the parameters of those signals. On the other hand, the assumption of unstructured spatial signatures is interesting from a practical standpoint and facilitates the estimation problem since the estimates of these signatures can be obtained in closed form. This constitutes a first step towards ...

Seco-Granados, Gonzalo — Universitat Politecnica de Catalunya


Array Signal Processing Algorithms for Beamforming and Direction Finding

Array processing is an area of study devoted to processing the signals received from an antenna array and extracting information of interest. It has played an important role in widespread applications like radar, sonar, and wireless communications. Numerous adaptive array processing algorithms have been reported in the literature in the last several decades. These algorithms, in a general view, exhibit a trade-off between performance and required computational complexity. In this thesis, we focus on the development of array processing algorithms in the application of beamforming and direction of arrival (DOA) estimation. In the beamformer design, we employ the constrained minimum variance (CMV) and the constrained constant modulus (CCM) criteria to propose full-rank and reduced-rank adaptive algorithms. Specifically, for the full-rank algorithms, we present two low-complexity adaptive step size mechanisms with the CCM criterion for the step size adaptation of the ...

Lei Wang — University of York


Sparse Array Signal Processing

This dissertation details three approaches for direction-of-arrival (DOA) estimation or beamforming in array signal processing from the perspective of sparsity. In the first part of this dissertation, we consider sparse array beamformer design based on the alternating direction method of multipliers (ADMM); in the second part of this dissertation, the problem of joint DOA estimation and distorted sensor detection is investigated; and off-grid DOA estimation is studied in the last part of this dissertation. In the first part of this thesis, we devise a sparse array design algorithm for adaptive beamforming. Our strategy is based on finding a sparse beamformer weight to maximize the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm convergence properties are analyzed by showing the monotonicity and boundedness of the augmented Lagrangian function. In addition, ...

Huang, Huiping — Darmstadt University of Technology


Sparse Modeling Heuristics for Parameter Estimation - Applications in Statistical Signal Processing

This thesis examines sparse statistical modeling on a range of applications in audio modeling, audio localizations, DNA sequencing, and spectroscopy. In the examined cases, the resulting estimation problems are computationally cumbersome, both as one often suffers from a lack of model order knowledge for this form of problems, but also due to the high dimensionality of the parameter spaces, which typically also yield optimization problems with numerous local minima. In this thesis, these problems are treated using sparse modeling heuristics, with the resulting criteria being solved using convex relaxations, inspired from disciplined convex programming ideas, to maintain tractability. The contributions to audio modeling and estimation focus on the estimation of the fundamental frequency of harmonically related sinusoidal signals, which is commonly used model for, e.g., voiced speech or tonal audio. We examine both the problems of estimating multiple audio sources ...

Adalbjörnsson, Stefan Ingi — Lund University


MIMO Radars with Sparse Sensing

Multi-input and multi-output (MIMO) radars achieve high resolution of arrival direction by transmitting orthogonal waveforms, performing matched filtering at the receiver end and then jointly processing the measurements of all receive antennas. This dissertation studies the use of compressive sensing (CS) and matrix completion (MC) techniques as means of reducing the amount of data that need to be collected by a MIMO radar system, without sacrificing the system’s good resolution properties. MIMO radars with sparse sensing are useful in networked radar scenarios, in which the joint processing of the measurements is done at a fusion center, which might be connected to the receive antennas via a wireless link. In such scenarios, reduced amount of data translates into bandwidth and power saving in the receiver-fusion center link. First, we consider previously defined CS-based MIMO radar schemes, and propose optimal transmit antenna ...

Sun, Shunqiao — Rutgers, The State University of New Jersey


Partial Relaxation: A Computationally Efficient Direction-of-Arrival Estimation Framework

Direction-of-Arrival (DOA) estimation from data collected at a sensor array in the presence of noise has been a fundamental and long-established research topic of interest in sensor array processing. The application of DOA estimation does not only restrict to radar but also spans multiple additional fields of research, including radio astronomy, biomedical imaging, seismic exploration, wireless communication, among others. Due to the wide applications of DOA estimation, various methods have been developed in the literature to increase the resolution capability, computational efficiency, and robustness of the algorithms. However, a trade-off between the estimation performance and the computational complexity is generally inevitable. This thesis addresses the challenge of developing low-complexity DOA estimators with the ability to resolve closely spaced source signals in the threshold region, i.e., low sample size or low Signal-to-Noise ratio. Motivated by various interpretations of the conventional DOA ...

Trinh Hoang, Minh — Technical University of Darmstadt


Tensor Decompositions and Algorithms for Efficient Multidimensional Signal Processing

Due to the extensive growth of big data applications, the widespread use of multisensor technologies, and the need for efficient data representations, multidimensional techniques are a primary tool for many signal processing applications. Multidimensional arrays or tensors allow a natural representation of high-dimensional data. Therefore, they are particularly suited for tasks involving multi-modal data sources such as biomedical sensor readings or multiple-input and multiple-output (MIMO) antenna arrays. While tensor-based techniques were still in their infancy several decades ago, nowadays, they have already proven their effectiveness in various applications. There are many different tensor decompositions in the literature, and each finds use in diverse signal processing fields. In this thesis, we focus on two tensor factorization models: the rank-(Lr,Lr,1) Block-Term Decomposition (BTD) and the Multilinear Generalized Singular Value Decomposition (ML-GSVD) that we propose in this thesis. The ML-GSVD is an extension ...

Khamidullina, Liana — Technische Universität Ilmenau


A Contribution to Efficient Direction Finding using Antenna Arrays

It is save to say that there is no such thing as the direction finding (DF) algorithm. Rather, there are algorithms that are tuned to resolve hundreds of paths, algorithms that are designed for uniform linear arrays or uniform circular arrays, and algorithms that strive for efficiency. The doctoral thesis at hand deals with the latter type of algorithms. However, the approach taken does not only incorporate the actual DF algorithm but approaches the problem from different perspectives. The first perspective concerns the description of the array manifold. Current interpolation schemes have no notion of polarization. Hence, the array manifold interpolation is performed separately for each state of polarization. In this thesis, we adopted the idea of interpolation via a 2-D discrete Fourier transform. However, we transform the problem into the quaternionic domain. Here, a 2-D discrete quaternionic Fourier transform ...

Neudert-Schulz, Dominik — Technische Universität Ilmenau


GNSS Signal Processing and Spatial Diversity Exploitation

Global Navigation Satellite Systems (GNSS) signals are broadly used for positioning, navigation and timing (PNT) in many different applications and use cases. Although different PNT technologies are available, GNSS is expected to be a key player in the derivation of positioning and timing for many future applications, including those in the context of the Internet of Things (IoT) or autonomous vehicles, since it has the important advantage of being open access and worldwide available. Indeed, GNSS is performing very well in mild propagation conditions, achieving position and time synchronization accuracies down to the cm and ns levels, respectively. Nevertheless, the exploitation of GNSS in harsh propagation conditions typical of urban and indoor scenarios is very challenging, resulting in position errors of up to tens or even hundreds of meters, and timing accuracies of hundreds of ns. This thesis deals with ...

Garcia Molina, Jose Antonio — UPC


Acoustic sensor network geometry calibration and applications

In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization ...

Plinge, Axel — TU Dortmund University


Signal Processing for Multicell Multiuser MIMO Wireless Communication Systems

Multi-user multi-antenna wireless communication systems have become essential due to the widespread of smart applications and the use of the Internet. Ultra-dense deployment of small cell networks has been recognized as an effective way to meet the exponentially growing mobile data traffic and to accommodate increasingly diversified mobile applications for beyond 5G and future wireless networks. Small cells using low power nodes are meant to be deployed in hot spots, where the number of users varies strongly with time and between adjacent cells. As a result, small cells are expected to have burst-like traffic, which makes the static time division duplex (TDD) frame configuration strategy, where a common TDD pattern is selected for the whole network, not able to meet the users' requirements and the traffic fluctuations. Dynamic TDD (DTDD) technology which allows the cells to independently adapt their TDD ...

Nwalozie, Gerald Chetachi — Technische Universität Ilmenau


Advanced Signal Processing Techniques for Global Navigation Satellite Systems

This Dissertation addresses the synchronization problem using an array of antennas in the general framework of Global Navigation Satellite Systems (GNSS) receivers. Positioning systems are based on time delay and frequency-shift estimation of the incoming signals in the receiver side, in order to compute the user's location. Sources of accuracy degradation in satellite-based navigation systems are well-known, and their mitigation has deserved the attention of a number of researchers in latter times. While atmospheric-dependant sources (delays that depend on the ionosphere and troposphere conditions) can be greatly mitigated by differential systems external to the receiver's operation, the multipath effect is location-dependant and remains as the most important cause of accuracy degradation in time delay estimation, and consequently in position estimation, becoming a signal processing challenge. Traditional approaches to time delay estimation are often embodied in a communication systems framework. Indeed, ...

Fernandez-Prades, Carles — Universitat Politecnica de Catalunya

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.