Optimization of Video Streaming over 3G Networks

VIDEO streaming over cellular networks has been made possible in the last years by better performing video codecs and wireless cellular networks oriented to data transmission. The interaction between two heterogeneous worlds, the telecommunication infrastructure and the coding video software, calls for advanced optimization mechanisms. The actors involved in the optimization process are the cellular system's access network, UMTS and HSDPA, the wireless transmission channel and the fi nal user equipped with a mobile device capable of decoding video sequences. The knowledge and characterization of each of the building blocks allow the optimization of each element to the specifi c needs of the others. This doctoral thesis discusses three main contributions. In the fi rst part, the e ffects of transmission errors on video streams are analyzed. Incorrectly received video packets are usually discarded by the lower layers and not ...

Superiori, Luca — Vienna University of Technology


Error Resilience and Concealment Techniques for High Efficiency Video Coding

This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the ...

João Filipe Monteiro Carreira — Loughborough University London


Robust and multiresolution video delivery : From H.26x to Matching pursuit based technologies

With the joint development of networking and digital coding technologies multimedia and more particularly video services are clearly becoming one of the major consumers of the new information networks. The rapid growth of the Internet and computer industry however results in a very heterogeneous infrastructure commonly overloaded. Video service providers have nevertheless to oer to their clients the best possible quality according to their respective capabilities and communication channel status. The Quality of Service is not only inuenced by the compression artifacts, but also by unavoidable packet losses. Hence, the packet video stream has clearly to fulll possibly contradictory requirements, that are coding eciency and robustness to data loss. The rst contribution of this thesis is the complete modeling of the video Quality of Service (QoS) in standard and more particularly MPEG-2 applications. The performance of Forward Error Control (FEC) ...

Frossard, Pascal — Swiss Federal Institute of Technology


Video Quality Estimation for Mobile Video Streaming

For the provisioning of video streaming services it is essential to provide a required level of customer satisfaction, given by the perceived video stream quality. It is therefore important to choose the compression parameters as well as the network settings so that they maximize the end-user quality. Due to video compression improvements of the newest video coding standard H.264/AVC, video streaming for low bit and frame rates is possible while preserving its perceptual quality. This is especially suitable for video applications in 3G wireless networks. Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones, Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal Mobile Telecommunications System (UMTS) streaming ...

Ries, Michal — Vienna University of Technology


MPEGII Video Coding For Noisy Channels

This thesis considers the performance of MPEG-II compressed video when transmitted over noisy channels, a subject of relevance to digital terrestrial television, video communication and mobile digital video. Results of bit sensitivity and resynchronisation sensitivity measurements are presented and techniques proposed for substantially improving the resilience of MPEG-II to transmission errors without the addition of any extra redundancy into the bitstream. It is errors in variable length encoded data which are found to cause the greatest artifacts as errors in these data can cause loss of bitstream synchronisation. The concept of a ‘black box transcoder’ is developed where MPEG-II is losslessly transcoded into a different structure for transmission. Bitstream resynchronisation is achieved using a technique known as error-resilient entropy coding (EREC). The error-resilience of differentially coded information is then improved by replacing the standard 1D-DPCM with a more resilient hierarchical ...

Swan, Robert — University of Cambridge


Link Error Analysis and Modeling for Cross-Layer Design in UMTS Mobile Communication

Particularly in wireless mobile communications, link errors severely affect the quality of the services due to the high error probability and the specific error characteristics (burst errors) in the radio access part of the network. In this thesis it is shown that a thorough analysis and the appropriate modeling of the radiolink error behaviour is essential not only to evaluate and optimize the higher layer protocols and services. It is also the basis for finding network-aware cross-layer processing algorithms which are capable of exploiting the specific properties of the link error statistics (e.g. the predictability). This thesis presents the analysis of the radio link errors based on measurements in live UMTS (Universal Mobile Telecommunication System) radio access networks. It is shown that due to the link error characteristics basically two scenarios have to be distinguished: static and dynamic (regardless of ...

Karner, W. — Vienna University of Technology


Multiple Objective Optimization for Video Streaming

In this thesis, we propose Multiple Objective Optimization (MOO) frameworks for efficient video streaming. Firstly, we introduce pre-roll delay-distortion optimization (DDO) for uninterrupted content-adaptive video streaming over low capacity, constant bitrate (CBR) channels using MOO. Content analysis is used to divide the input video into shots with assigned relevance levels. The video is adaptively encoded and streamed aiming minimum pre-roll delay and distortion with the optimal spatial and temporal resolutions and quantization parameters for each shot. With buffer and distortion constraints, the bitrate of unimportant shots is reduced to achieve an acceptable quality in important shots. Secondly, we introduce a cross-layer optimized video rate adaptation and scheduling scheme to achieve maximum "application layer" Quality-of-Service (QoS), maximum video throughput (video seconds per transmission slot), and QoS fairness for wireless video streaming. Using the MOO framework, these objectives are jointly optimized such ...

Ozcelebi, Tanir — Koc University


Watermark-based error concealment algorithms for low bit rate video communications

In this work, a novel set of robust watermark-based error concealment (WEC) algorithms are proposed. Watermarking is used to introduce redundancy to the transmitted data with little or no increase in its bit rate during transmission. The proposed algorithms involve generating a low resolution version of a video frame and seamlessly embedding it as a watermark in the frame itself during encoding. At the receiver, the watermark is extracted from the reconstructed frame and the lost information is recovered using the extracted watermark signal, thus enhancing its perceptual quality. Three DCT-based spread spectrum watermark embedding techniques are presented in this work. The first technique uses a multiplicative Gaussian pseudo-noise with a pre-defined spreading gain and fixed chip rate. The second one is its adaptively scaled version and the third technique uses informed watermarking. Two versions of the low resolution reference, ...

Adsumilli, Chowdary — University of California, Santa Barbara


Contributions to Improved Hard- and Soft-Decision Decoding in Speech and Audio Codecs

Source coding is an essential part in digital communications. In error-prone transmission conditions, even with the help of channel coding, which normally introduces delay, bit errors may still occur. Single bit errors can result in significant distortions. Therefore, a robust source decoder is desired for adverse transmission conditions. Compared to the traditional hard-decision (HD) decoding and error concealment, soft-decision (SD) decoding offers a higher robustness by exploiting the source residual redundancy and utilizing the bit-wise channel reliability information. Moreover, the quantization codebook index can be either mapped to a fixed number of bits using fixed-length (FL) codes, or a variable number of bits employing variable-length (VL) codes. The codebook entry can be either fixed over time or time-variant. However, using a fixed scalar quantization codebook leads to the same performance for correlated and uncorrelated processes. This thesis aims to improve ...

Han, Sai — Technische Universität Braunschweig


Multiple Description Coding for Path Diversity Video Streaming

In the current heterogeneous communication environments, the great variety of multimedia systems and applications combined with fast evolution of networking architectures and topologies, give rise to new research problems related to the various elements of the communication chain. This includes, the ever present problem in video communications, which results from the need for coping with transmission errors and losses. In this context, video streaming with path diversity appeared as a novel communication framework, involving different technological fields and posing several research challenges. The research work carried out in this thesis is a contribution to robust video coding and adaptation techniques in the field of Multiple Description Coding (MDC) for multipath video streaming. The thesis starts with a thorough study of MDC and its theoretical basis followed by a description of the most important practical implementation aspects currently available in literature. ...

Correia, Pedro Daniel Frazão — University of Coimbra


Adaptive media streaming over multipath networks

With the latest developments in video coding technology and fast deployment of end-user broadband internet connections, real-time media applications become increasingly interesting for both private users and businesses. However, the internet remains a best-effort service network unable to guarantee the stringent requirements of the media application, in terms of high, constant bandwidth, low packet loss rate and transmission delay. Therefore, efficient adaptation mechanisms must be derived in order to bridge the application requirements with the transport medium characteristics. Lately, different network architectures, e.g., peer-to-peer networks, content distribution networks, parallel wireless services, emerge as potential solutions for reducing the cost of communication or infrastructure, and possibly improve the application performance. In this thesis, we start from the path diversity characteristic of these architectures, in order to build a new framework, specific for media streaming in multipath networks. Within this framework we ...

Jurca, Dan — EPFL/ITS, Lausanne, Switzerland


Scalable Single and Multiple Description Scalar Quantization

Scalable representation of a source (e.g., image/video/3D mesh) enables decoding of the encoded bit-stream on a variety of end-user terminals with varying display, storage and processing capabilities. Furthermore, it allows for source communication via channels with different transmission bandwidths, as the source rate can be easily adapted to match the available channel bandwidth. From a different perspective, error-resilience against channel losses is also very important when transmitting scalable source streams over lossy transmission channels. Driven by the aforementioned requirements of scalable representation and error-resilience, this dissertation focuses on the analysis and design of scalable single and multiple description scalar quantizers. In the first part of this dissertation, we consider the design of scalable wavelet-based semi-regular 3D mesh compression systems. In this context, our design methodology thoroughly analyzes different modules of the mesh coding system in order to single-out appropriate design ...

Satti, Shahid Mahmood — Vrije Universiteit Brussel


A statistical approach to motion estimation

Digital video technology has been characterized by a steady growth in the last decade. New applications like video e-mail, third generation mobile phone video communications, videoconferencing, video streaming on the web continuously push for further evolution of research in digital video coding. In order to be sent over the internet or even wireless networks, video information clearly needs compression to meet bandwidth requirements. Compression is mainly realized by exploiting the redundancy present in the data. A sequence of images contains an intrinsic, intuitive and simple idea of redundancy: two successive images are very similar. This simple concept is called temporal redundancy. The research of a proper scheme to exploit the temporal redundancy completely changes the scenario between compression of still pictures and sequence of images. It also represents the key for very high performances in image sequence coding when compared ...

Moschetti, Fulvio — Swiss Federal Institute of Technology


Content Scalability in Multiple Description Image and Video Coding

High compression ratio, scalability and reliability are the main issues for transmitting multimedia content over best effort networks. Scalable image and video coding meets the user requirements by truncating the scalable bitstream at different quality, resolution and frame rate. However, the performance of scalable coding deteriorates rapidly over packet networks if the base layer packets are lost during transmission. Multiple description coding (MDC) has emerged as an effective source coding technique for robust image and video transmission over lossy networks. In this research problem of incorporating scalability in MDC for robust image and video transmission over best effort network is addressed. The first contribution of this thesis is to propose a strategy for generating more than two descriptions using multiple description scalar quantizer (MDSQ) with an objective to jointly decoded any number of descriptions in balanced and unbalanced manner. The ...

Majid, Muhammad — University of Sheffield


Nonlinear rate control techniques for constant bit rate MPEG video coders

Digital visual communication has been increasingly adopted as an efficient new medium in a variety of different fields; multi-media computers, digital televisions, telecommunications, etc. Exchange of visual information between remote sites requires that digital video is encoded by compressing the amount of data and transmitting it through specified network connections. The compression and transmission of digital video is an amalgamation of statistical data coding processes, which aims at efficient exchange of visual information without technical barriers due to different standards, services, media, etc. It is associated with a series of different disciplines of digital signal processing, each of which can be applied independently. It includes a few different technical principles; distortion, rate theory, prediction techniques and control theory. The MPEG (Moving Picture Experts Group) video compression standard is based on this paradigm, thus, it contains a variety of different coding ...

Saw, Yoo-Sok — University Of Edinburgh

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.