Blind Equalisation for Space-Time Coding over ISI Channels

Multi-input multi-output (MIMO) channels are known to increase the capacity of a transmission link. This can be exploited to increase either the multiplexing gain or the diversity gain, which leads to a higher data throughput or a better resilience of the link to fading, respectively. This thesis is concerned with the diversity gain, which, in a flat fading channel, can be maximised by Alamouti’s space-time block coding (STBC) scheme and a number of derivative techniques. For frequency selective fading, i.e. dispersive, MIMO channels, a few solutions have been reported in the literature including MIMO-OFDM, where the channel is decomposed into a number of narrowband problems, and a technique known as time-reversal STBC. For the latter, a number of blind adaptive algorithms have been derived, implemented and tested in order to avoid the requirement of explicit knowledge of the channel. The ...

Bendoukha, Samir — University of Strathclyde


Feedback-Channel and Adaptive MIMO Coded-Modulations

When the transmitter of a communication system disposes of some Channel State Information (CSI), it is possible to design linear precoders that optimally allocate the power inducing high gains either in terms of capacity or in terms of reliable communications. In practical scenarios, this channel knowledge is not perfect and thus the transmitted signal suffers from the mismatch between the CSI at the transmitter and the real channel. In that context, this thesis deals with two different, but related, topics: the design of a feasible transmitter channel tracker for time varying channels, and the design of optimal linear precoders robust to imperfect channel estimates. The first part of the thesis proposes the design of a channel tracker that provides an accurate CSI at the transmitter by means of a low capacity feedback link. Historically, those schemes have been criticized because ...

Rey, Francesc — Universitat Politecnica de Catalunya


Space-Time Block Coding for Multiple Antenna Systems

The demand for mobile communication systems with high data rates has dramatically increased in recent years. New methods are necessary in order to satisfy this huge communications demand, exploiting the limited resources such as bandwidth and power as efficient as possible. MIMO systems with multiple an- tenna elements at both link ends are an efficient solution for future wireless communications systems as they provide high data rates by exploiting the spatial domain under the constraints of limited bandwidth and transmit power. Space-Time Block Coding (STBC) is a MIMO transmit strategy which exploits transmit diversity and high reliability. STBCs can be divided into two main classes, namely, Orthogonal Space-Time Block Codes (OSTBCs) and Non-Orthogonal Space-Time Block Codes (NOSTBCs). The Quasi-Orthogonal Space-Time Block Codes (QSTBCs) belong to class of NOSTBCs and have been an intensive area of research. The OSTBCs achieve full ...

Badic, B. — Vienna University of Technology


Study and optimization of multi-antenna systems associated with multicarrier modulations

Since several years, multi-antenna systems are foreseen as a potential solution for increasing the throughput of future wireless communication systems. The aim of this thesis is to study and to improve the transmitter and receiver's techniques of these MIMO (Multiple Input Multiple Output) systems in the context of a multi-carrier transmission. On the one hand, the OFDM (Orthogonal Frequency Division Multiplex) modulation, which transform a frequency selective channel into multiple non frequency selective channels, is particularly well adapted to the conception of MIMO receivers with low complexity. On the other hand, two techniques allowing to improve the exploitation of frequential and/or temporal diversities are associated with OFDM, namely linear precoding (LP-OFDM) and CDMA in a MC-CDMA (Multicarrier Code division Multiplex Access) scheme. We have associated LP-OFDM and MC-CDMA with two MIMO techniques which require no channel state information at the ...

LE NIR, Vincent — INSA de Rennes


Fast Blind Adaptive Equalisation for Multiuser CDMA Systems

In order to improve communication over a dispersive channel in a CDMA system, we have to re-establish the orthogonally of codes which are used when combining input signals from many users onto a single communication path, as otherwise the performance of such system is limited significantly by inter-symbol interference (ISI) and multiuser access interference (MAI). In order to achieve this, adaptive filters are employed. A variety of adaptive schemes to remove ISI and MAI have been reported in the literature, some of which rely on training sequences, such as the Least Mean Squares (LMS) and Recursive Least Squares (RLS) algorithms, or on blind adaptation, such as the Constant Modulus Algorithm (CMA) or the Decision Directed algorithm (DD), which has similar convergence properties as the LMS in the absence of decision errors, the CMA is relatively slow compared to the DD ...

Daas, Adel — University of Strathclyde


Study on Subband Adaptive Array for Space-Time Codes in Wideband Channel

Recently, many works have been accomplished on transmit diversity for a high-speed data transmission through the wireless channel. A Multiple Input Multiple Output (MIMO) system which employs multiple antennas at transmitter and receiver has been shown to be able to improve transmission data rate and capacity of the system. When the channel state information (CSI) is unknown at the transmitter, an multiple input single output (MISO) system combined with the transmit diversity of space time coding modulation known as space-time block coding (STBC) has taken a great attention. However, the performance of STBC is deteriorated under frequency selective fading due to inter symbol interference (ISI). An STBC employing tapped delay line adaptive array (STBC-TDLAA) is known as a solution for this problem since it utilizes the delayed signals to enhance the desired signal instead of excluding them as interferences. However, ...

Ramli, Nordin Bin — University of Electro-Communications, Japan


On MIMO Systems with Limited Feedback: End-to-End Distortion, Analog Channel Feedback, and Layered Multiplexing

In this thesis, we investigate the following three fields on multi-input multi-output (MIMO) systems with limited feedback. End-to-end distortion: The first part of the thesis presents the joint impact of antenna numbers, source-to-channel bandwidth ratio, spatial correlation and time diversity on the optimum expected end-to-end distortion in an outage-free MIMO system. In particular, based on the analytical expression for any signal-to-noise ratio (SNR), the closed-form expression of the asymptotic optimum expected end-to-end distortion at a high SNR is derived, comprised of the optimum distortion exponent and the optimum distortion factor. The simulation results illustrate that, at a practical high SNR, the analysis on the impacts of the optimum distortion exponent and the optimum distortion factor explains the behavior of the optimum expected end-to-end distortion. The results in this part could be the performance objectives for analog-source transmission systems as well ...

Chen, Jinhui — TELECOM ParisTech


Distributed Space-Time Coding Techniques with Limited Feedback in Cooperative MIMO Networks

Multi-input multi-output (MIMO) wireless networks and distributed MIMO relaying wireless networks have attracted significant attention in current generation of wireless communication networks, and will play a key role in the next generation of wireless net- works. The improvement of network capacity, data rate and reliability can be achieved at the cost of increasing computational complexity of employing space-time coding (STC) and distributed STC (DSTC) in MIMO and distributed MIMO relaying networks, respectively. Efficient designs and algorithms to achieve high diversity and coding gains with low computational complexity in encoding and decoding of STC and DSTC schemes are essential. In this thesis, DSTC designs with high diversity and coding gains and efficient detection and code matrices optimization algorithms in cooperative MIMO networks are proposed. Firstly, adaptive power allocation (PA) algorithms with different criteria for a coop- erative MIMO network equipped with ...

Peng, Tong — University of York


Non-Linear Precoding and Equalisation for Broadband MIMO Channels

Multiple-input multiple-output (MIMO) technology promises significant capacity improvements in order to more efficiently utilise the radio frequency spectrum. To achieve its anticipated multiplexing gain as well as meet the requirements for high data rate services, proposed broadband systems are based on OFDM or similar block based techniques, which are afflicted by poor design freedom at low redundancy, and are known to suffer badly from co-channel interference (CCI) in the presence of synchronisation errors. Non-block based approaches are scarce and use mostly decision feedback equalisation (DFE) or V-BLAST approaches adopted for the broadband case, as well as Tomlinson-Harashima precoding (THP). These methods do not require a guard interval and can therefore potentially achieve a higher spectral efficiency. The drawback of these schemes is the large effort in determining the optimum detection order in both space and time, often motivating the adoption ...

Waleed Eid Al-Hanafy — University of Strathclyde


Subcarrier Intensity Modulated Free-Space Optical Communication Systems

This thesis investigates and analyses the performance of terrestrial free-space optical communication (FSO) system based on the phase shift keying pre-modulated subcarrier intensity modulation (SIM). The results are theoretically and experimentally compared with the classical On-Off keying (OOK) modulated FSO system in the presence of atmospheric turbulence. The performance analysis is based on the bit error rate (BER) and outage probability metrics. Optical signal traversing the atmospheric channel suffers attenuation due to scattering and absorption of the signal by aerosols, fog, atmospheric gases and precipitation. In the event of thick fog, the atmospheric attenuation coefficient exceeds 100 dB/km, this potentially limits the achievable FSO link length to less than 1 kilometre. But even in clear atmospheric conditions when signal absorption and scattering are less severe with a combined attenuation coefficient of less than 1 dB/km, the atmospheric turbulence significantly impairs ...

Popoola, Wasiu — Northumbria University, Newcastle upon Tyne, UK


Computationally Efficient Equalisation of Broadband Multiple-Input Multiple-Output Systems

Multiple-input multiple-output (MIMO) systems are encountered for example in communications if several transmit and receive antennas are empoyed, such that a separate transmit channel exists between every possible pairing of transmitter and receiver antennas. As a results if this spatial diversity, the channel capacity is dramatically increased over the single-inout single-output (SISO) case. While this increase is desired, the use of high data rates requires sophistiocated equalisation and/or detection schemes in the receiver to compensate for spatial and temporal dispersion in broadband MIMO channels, since a time-dispersive, in addition ot spatially-dispersice channel, must be assumed. The estimation of the broadband MIMO channel or its inverse is in general difficult and calls for training sequences that reduce the slot time for the transmission of actual data, which may counteract the promised gain in channel capacity. Another problem can be the computational ...

Bale, Viktor — University of Southampton


Low-Complexity Iterative Detection Algorithms for Multi-Antenna Systems

Multiple input multiple output (MIMO) techniques have been widely employed by dif- ferent wireless systems with many advantages. By using multiple antennas, the system is able to transmit multiple data streams simultaneously and within the same frequency band. The methods known as spatial multiplexing (SM) and spatial diversity (SD) im- proves the high spectral efficiency and link reliability of wireless communication systems without requiring additional transmitting power. By introducing channel coding in the transmission procedure, the information redundancy is introduced to further improve the reliability of SM links and the quality of service for the next generation communication systems. However, the throughput performance of these systems is limited by interference. A number of different interference suppression techniques have been reported in the literature. Theses techniques can be generally categorised into two aspects: the preprocessing techniques at the transmitter side and ...

Peng Li — University of York


Advanced Transceiver Design for Continuous Phase Modulation

This dissertation proposes advanced transceiver designs applying turbo and space-time (ST) concepts to continuous phase modulation (CPM), which is preferred in numerous power- and band-limited communication systems for its constant envelope and spectral efficiency. Despite its highly attractive spectral properties, maximum-likelihood detection of CPM over the frequency-selective multipath fading channels can bring impractical complexity issues because of the intensive search over a single super trellis which combines the effects of the modulation and the multipath channel. Application of the reduced-state trellis search algorithms results in lower complexity but the computational load could still be prohibitively large to obtain high performance in long channel impulse responses. In the dissertation, instead of employing trellis-based combined detection methods, equalization and demodulation functions are separated and novel low-complexity receivers with soft-input soft-output (SISO) time-domain and frequency-domain linear equalizers are proposed for bit-interleaved coded CPM, ...

Ozgul, Baris — Bogazici University


Polynomial Predictive Filters: Implementation and Applications

In this thesis, smoothness of sampled real-world signals is exploited through the application of polynomial predictive filters. The principal reason for employing the polynomial signal model is principally twofold: firstly, assuming that the sampling rate is adequate, all real-world signals exhibit piecewise polynomial-like behavior, and secondly, polynomial-based signal processing is computationally efficient. By definition, polynomial predictive filters provide estimates of future values of polynomial-like signals. Thus, the potential applications of this research include a vast number of different delay sensitive operations on measurements like temperature, position, velocity, or power, especially in control engineering field. The polynomial-based predictive signal processing is a well-known technique, but polynomial-predictive filters have had severe drawbacks, which have hindered their application; their white noise attenuation is generally low, or they exhibit considerable passband gain peaks, rendering them unattractive for most applications. It has been possible to ...

Tanskanen, Jarno M. A. — Helsinki University of Technology


Channel estimation and non-linear transceiver designs for MIMO OFDM relay systems

Multiple-input multiple output (MIMO) systems deploy multiple antennas at either end of a communication link and can provide significant benefits compared to traditional single antenna systems, such as increased data rates through spatial multiplexing gain, and/or improved link reliability through diversity techniques. Recently, the natural extension of utilising multiple antennas in relay networks, known as MIMO relaying, has attracted significant research attention due to the fact that the benefits of MIMO can be coupled with extended network coverage through the use of relaying devices. This thesis concentrates on the design and analysis of different aspects of MIMO relay systems communicating over frequency selective channels with the use of orthogonal frequency division multiplexing (OFDM). The first focus of this thesis is on the development of training based channel estimation algorithms for two-hop MIMO OFDM relaying. In the first phase of channel ...

Millar, Andrew Paul — University of Strathclyde

The current layout is optimized for mobile phones. Page previews, thumbnails, and full abstracts will remain hidden until the browser window grows in width.

The current layout is optimized for tablet devices. Page previews and some thumbnails will remain hidden until the browser window grows in width.